×

Statistics of patterns in typical cut and project sets. (English) Zbl 1448.37010

Summary: In this article pattern statistics of typical cubical cut and project sets are studied. We give estimates for the rate of convergence of appearances of patches to their asymptotic frequencies. We also give bounds for repetitivity and repulsivity functions. The proofs use ideas and tools developed in discrepancy theory.

MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
37A30 Ergodic theorems, spectral theory, Markov operators
37B10 Symbolic dynamics

References:

[1] B.Adamczewski. Symbolic discrepancy and self-similar dynamics. Ann. Inst. Fourier (Grenoble)54(7) (2004), 2201-2234. · Zbl 1066.11032
[2] J.Aliste-Prieto, D.Coronel and J.-M.Gambaudo. Rapid convergence to frequency for substitution tilings of the plane. Comm. Math. Phys.306(2) (2011), 365-380. · Zbl 1232.05049
[3] P.Arnoux, C.Mauduit, I.Shiokawa and J.-I.Tamura. Complexity of sequences defined by billiard in the cube. Bull. Soc. Math. France122(1) (1994), 1-12. · Zbl 0791.58034
[4] Y.Baryshnikov. Complexity of trajectories in rectangular billiards. Comm. Math. Phys.174(1) (1995), 43-56. · Zbl 0839.11006
[5] V.Beresnevich, D.Dickinson and S.Velani. Measure theoretic laws for lim sup sets. Mem. Amer. Math. Soc.179(846) (2006), x+91. · Zbl 1129.11031
[6] V.Berthé and L.Vuillon. Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math.223(1-3) (2000), 27-53. · Zbl 0970.68124
[7] A. I.Bufetov and B.Solomyak. Limit theorems for self-similar tilings. Comm. Math. Phys.319(3) (2013), 761-789. · Zbl 1279.37019
[8] J. W. S.Cassels. An Introduction to Diophantine Approximation(Cambridge Tracts in Mathematics and Mathematical Physics, 45). Cambridge University Press, New York, 1957. · Zbl 0077.04801
[9] F.Dreher, M.Kesseböhmer, A.Mosbach, T.Samuel and M.Steffens. Regularity of aperiodic minimal subshifts. Bull. Math. Sci. (Mar 2017), doi:10.1007/s13373-017-0102-0. · Zbl 1407.37023
[10] N. P.Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics(Lecture Notes in Mathematics, 1794). Eds. V.Berthé, S.Ferenczi, C.Mauduit and A.Siegel. Springer, Berlin, 2002. · Zbl 1014.11015
[11] A.Forrest, J.Hunton and J.Kellendonk. Topological invariants for projection method patterns. Mem. Amer. Math. Soc.159(758) (2002), x+120. · Zbl 1011.52008
[12] S.Grepstad and N.Lev. Sets of bounded discrepancy for multi-dimensional irrational rotation. Geom. Funct. Anal.25(1) (2015), 87-133. · Zbl 1318.11097
[13] M.Gröger, M.Kesseböhmer, A.Mosbach, T.Samuel and M.Steffens. A classification of aperiodic order via spectral metrics & Jarník sets, Preprint, 2016, arXiv:1601.06435. · Zbl 1421.37014
[14] G.Harman. Metric Number Theory(London Mathematical Society Monographs. New Series, 18). The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 1081.11057
[15] A.Haynes, H.Koivusalo and J.Walton. A characterization of linearly repetitive cut and project sets. Nonlinearity31(2) (2018), 515-539. · Zbl 1384.52018
[16] A.Haynes, H.Koivusalo, J.Walton and L.Sadun. Gaps problems and frequencies of patches in cut and project sets. Math. Proc. Cambridge Philos. Soc.161(1) (2016), 65-85. · Zbl 1371.11110
[17] A.Julien. Complexity as a homeomorphism invariant for tiling spaces. Ann. Inst. Fourier (Grenoble)67(2) (2017), 539-577. · Zbl 1383.37013
[18] H.Kesten. On a conjecture of Erdős and Szüsz related to uniform distribution mod 1. Acta Arith.12 (1966/1967), 193-212. · Zbl 0144.28902
[19] L.Kuipers and H.Niederreiter. Uniform Distribution of Sequences(Pure and Applied Mathematics). Wiley-Interscience [John Wiley & Sons], New York, London, Sydney, 1974. · Zbl 0281.10001
[20] M.Laczkovich. Uniformly spread discrete sets in R^d. J. Lond. Math. Soc. (2)46(1) (1992), 39-57. · Zbl 0774.11038
[21] J. C.Lagarias and P. A. B.Pleasants. Local complexity of Delone sets and crystallinity. Canad. Math. Bull.45(4) (2002), 634-652; dedicated to Robert V. Moody. · Zbl 1016.52013
[22] B.Matei and Y.Meyer. Simple quasicrystals are sets of stable sampling. Complex Var. Elliptic Equ.55(8-10) (2010), 947-964. · Zbl 1207.94043
[23] R. V.Moody. Meyer sets and their duals. The Mathematics of Long-Range Aperiodic Order (Waterloo, ON, 1995)(NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, 489). Kluwer, Dordrecht, 1997, pp. 403-441. · Zbl 0880.43008
[24] M.Morse and G. A.Hedlund. Symbolic dynamics. Amer. J. Math.60(4) (1938), 815-866. · JFM 64.0798.04
[25] M.Morse and G. A.Hedlund. Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940), 1-42. · JFM 66.0188.03
[26] L.Sadun. Exact regularity and the cohomology of tiling spaces. Ergod. Th. & Dynam. Sys.31(6) (2011), 1819-1834. · Zbl 1271.37018
[27] J.Savinien. A metric characterisation of repulsive tilings. Discrete Comput. Geom.54(3) (2015), 705-716. · Zbl 1326.52019
[28] D.Shechtman, I.Blech, D.Gratias and J. W.Cahn. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett.53 (1984), 1951-1953.
[29] B.Solomyak. Nonperiodicity implies unique composition for self-similar translationally finite tilings. Discrete Comput. Geom.20(2) (1998), 265-279. · Zbl 0919.52017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.