×

Complexity as a homeomorphism invariant for tiling spaces. (La fonction de complexité comme invariant topologique des espaces de pavages.) (English. French summary) Zbl 1383.37013

The author studies aperiodic tilings with the following properties. In a tiling there are finitely many types of tiles up to translation. Any two tiles can be fitted together in finitely many ways, this condition is known as finite local complexity. A tiling is repetitive in the sense that any finite patch of it repeats within a bounded distance from any point of the tiling. An aperiodic tiling with the above properties has a topological compact space associated with it.
It is proved that if two aperiodic repetitive tilings with finite local complexity have homeomorphic tiling spaces, then their associated complexity functions are equivalent in a certain sense. This theorem can be reworded in terms of \(d\)-dimensional infinite words: if two \(\mathbb Z^d\)-subshifts (with the same conditions as above) are flow equivalent, their complexity functions are equivalent up to rescaling. An analogous theorem is stated for the repetitivity function, which is a quantitative measure of the recurrence of orbits in the tiling space.
Also it is shown that a certain cohomology group is an invariant of homeomorphisms between tiling spaces up to topological conjugacy.

MSC:

37B50 Multi-dimensional shifts of finite type, tiling dynamics (MSC2010)
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
52C23 Quasicrystals and aperiodic tilings in discrete geometry

References:

[1] Baake, Michael; Lenz, Daniel; Richard, Christoph, Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies, Lett. Math. Phys., 82, 1, 61-77 (2007) · Zbl 1129.37006 · doi:10.1007/s11005-007-0186-7
[2] Baake, Michael; Schlottmann, Martin; Jarvis, Peter D., Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability, J. Phys. A, 24, 19, 4637-4654 (1991) · Zbl 0755.52006 · doi:10.1088/0305-4470/24/19/025
[3] Bellissard, Jean; Benedetti, Riccardo; Gambaudo, Jean-Marc, Spaces of tilings, finite telescopic approximations and gap-labeling, Comm. Math. Phys., 261, 1, 1-41 (2006) · Zbl 1116.46063 · doi:10.1007/s00220-005-1445-z
[4] Bellissard, Jean; Herrmann, D. J. L.; Zarrouati, M., Directions in mathematical quasicrystals, 13, Hulls of aperiodic solids and gap labeling theorems, 207-258 (2000), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 0972.52014
[5] Benedetti, Riccardo; Gambaudo, Jean-Marc, On the dynamics of \(\mathbb{G} \)-solenoids. Applications to Delone sets, Ergodic Theory Dynam. Systems, 23, 3, 673-691 (2003) · Zbl 1124.37009 · doi:10.1017/S0143385702001578
[6] Boulmezaoud, Housem; Kellendonk, Johannes, Comparing different versions of tiling cohomology, Topology Appl., 157, 14, 2225-2239 (2010) · Zbl 1222.55004 · doi:10.1016/j.topol.2010.06.004
[7] Clark, Alex; Sadun, Lorenzo, When shape matters: deformations of tiling spaces, Ergodic Theory Dynam. Systems, 26, 1, 69-86 (2006) · Zbl 1085.37011 · doi:10.1017/S0143385705000623
[8] Frank, Natalie; Sadun, Lorenzo, Fusion tilings with infinite local complexity, Topology Proc., 43, 235-276 (2014) · Zbl 1329.37017
[9] Julien, Antoine, Complexité des pavages apériodiques : calculs et interprétations (2009)
[10] Julien, Antoine, Complexity and cohomology for cut-and-projection tilings, Ergodic Theory Dynam. Systems, 30, 2, 489-523 (2010) · Zbl 1185.37031 · doi:10.1017/S0143385709000194
[11] Julien, Antoine; Sadun, Lorenzo, Tiling deformations, cohomology, and orbit equivalence of tiling spaces (2015) · Zbl 1417.37085
[12] Julien, Antoine; Savinien, Jean, Transverse Laplacians for substitution tilings, Comm. Math. Phys., 301, 2, 285-318 (2011) · Zbl 1217.46045 · doi:10.1007/s00220-010-1150-4
[13] Kellendonk, Johannes, Noncommutative geometry of tilings and gap labelling, Rev. Math. Phys., 7, 7, 1133-1180 (1995) · Zbl 0847.52022 · doi:10.1142/S0129055X95000426
[14] Kellendonk, Johannes, Pattern-equivariant functions and cohomology, J. Phys. A, 36, 21, 5765-5772 (2003) · Zbl 1055.53029 · doi:10.1088/0305-4470/36/21/306
[15] Kellendonk, Johannes, Pattern equivariant functions, deformations and equivalence of tiling spaces, Ergodic Theory Dynam. Systems, 28, 4, 1153-1176 (2008) · Zbl 1149.52017 · doi:10.1017/S014338570700065X
[16] Kellendonk, Johannes; Putnam, Ian F., The Ruelle-Sullivan map for actions of \(\mathbb{R}^n\), Math. Ann., 334, 3, 693-711 (2006) · Zbl 1098.37004 · doi:10.1007/s00208-005-0728-1
[17] Kellendonk, Johannes; Sadun, Lorenzo, Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. Lond. Math. Soc., 89, 1, 114-130 (2014) · Zbl 1329.37020 · doi:10.1112/jlms/jdt062
[18] Lagarias, Jeffrey C.; Pleasants, Peter A. B., Repetitive Delone sets and quasicrystals, Ergodic Theory Dynam. Systems, 23, 3, 831-867 (2003) · Zbl 1062.52021 · doi:10.1017/S0143385702001566
[19] Lenz, Daniel, Aperiodic Linearly Repetitive Delone Sets Are Densely Repetitive, Discrete Comput Geom, 31, 2, 323-326 (2004) · Zbl 1052.37013 · doi:10.1007/s00454-003-2903-z
[20] Morse, Marston; Hedlund, Gustav A., Symbolic Dynamics, Amer. J. Math., 60, 4, 815-866 (1938) · Zbl 0019.33502 · doi:10.2307/2371264
[21] Muhly, Paul S.; Renault, Jean N.; Williams, Dana P., Equivalence and isomorphism for groupoid \(C^\ast \)-algebras, J. Operator Theory, 17, 1, 3-22 (1987) · Zbl 0645.46040
[22] Rand, Betseygail; Sadun, Lorenzo, An approximation theorem for maps between tiling spaces, Discrete Contin. Dyn. Syst., 29, 1, 323-326 (2011) · Zbl 1286.37009 · doi:10.3934/dcds.2011.29.323
[23] Renault, Jean, A groupoid approach to \(C^{\ast } \)-algebras, 793, ii+160 p. pp. (1980), Springer: Springer, Berlin · Zbl 0433.46049
[24] Sadun, Lorenzo; Williams, R. F., Tiling spaces are Cantor set fiber bundles, Ergodic Theory Dynam. Systems, 23, 1, 307-316 (2003) · Zbl 1038.37014 · doi:10.1017/S0143385702000949
[25] Schlottmann, Martin, Periodic and quasi-periodic Laguerre tilings, Internat. J. Modern Phys. B, 7, 6-7, 1351-1363 (1993) · Zbl 0798.52030 · doi:10.1142/S0217979293002365
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.