×

On the distinguished spectrum of \(\mathrm{Sp}_{2n}\) with respect to \(\mathrm{Sp}_n \times \mathrm{Sp}_n\). (English) Zbl 1448.11098

Let \(G\) denote a reductive group over a number field \(F\) and let \(H\) stand for a closed subgroup of \(G\) defined over \(F\). Let \(\mathbb{A}\) denote the ring of adéles over \(F\).
In the paper under the review, the authors introduce a the notion of the \(H\)-distinguished automorphic spectrum of \(G\), \(L^2_{H\text{-dist}}(G(F) \setminus G(\mathbb{A}))\), as the orthogonal complement in \(L^2 (G(F) \setminus G(\mathbb{A}))\) of the space of pseudo-Eisenstein series \(\varphi\) on \(G(F) \setminus G(\mathbb{A})\) such that \(\int_{H(F) \setminus H(\mathbb{A})} \varphi(hg)dh= 0\) for all \(g \in G(\mathbb{A})\).
In the case when \(G = \mathrm{GL}_{2n}\) and \(H = \mathrm{Sp}_n\), the authors obtain a complete description of \(L^2_{H\text{-dist}}(G(F) \setminus G(\mathbb{A}))\) and its discrete part. The results in this case suggest a close relation between the distinguished spectrum and the automorphic spectrum of \(\mathrm{GL}_n\) through functoriality.
The authors also consider the case when \(G= \mathrm{Sp}_{2n}\) and \(H = \mathrm{Sp}_n \times \mathrm{Sp}_n\), and obtain upper and lower bounds for the considered case. Again, the results suggest a close relation between the distinguished spectrum for the pair \((\mathrm{Sp}_{2n}, \mathrm{Sp}_n \times \mathrm{Sp}_n)\) and that of the pair \((\mathrm{GL}_{2n}, \mathrm{GL}_n \times \mathrm{GL}_n)\) through functoriality.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E35 Analysis on \(p\)-adic Lie groups

References:

[1] J. G. Arthur, A trace formula for reductive groups, I: Terms associated to classes in \(G(\mathbf{Q})\), Duke Math. J. 45 (1978), 911-952. · Zbl 0499.10032
[2] J. G. Arthur, A trace formula for reductive groups, II: Applications of a truncation operator, Compos. Math. 40 (1980), 87-121. · Zbl 0499.10033
[3] J. G. Arthur, On a family of distributions obtained from Eisenstein series, II: Explicit formulas, Amer. J. Math. 104 (1982), 1289-1336. · Zbl 0562.22004
[4] J. G. Arthur, On the inner product of truncated Eisenstein series, Duke Math. J. 49 (1982), 35-70. · Zbl 0518.22012
[5] A. Ash, D. Ginzburg, and S. Rallis, Vanishing periods of cusp forms over modular symbols, Math. Ann. 296 (1993), 709-723. · Zbl 0786.11028
[6] D. Bump and S. Friedberg, “The exterior square automorphic \(L\)-functions on \(\text{GL}(n)\)” in Festschrift in Honor of I. I. Piatetski-Shapiro on the Occasion of His Sixtieth Birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc. 3, Weizmann, Jerusalem, 1990, 47-65. · Zbl 0712.11030
[7] L. Clozel, “Spectral theory of automorphic forms” in Automorphic Forms and Applications, IAS/Park City Math. Ser. 12, Amer. Math. Soc., Providence, 2007, 43-93. · Zbl 1175.11027
[8] J. Dixmier, \(C^*\)-Algebras, North-Holland Math. Library 15, North-Holland, Amsterdam, 1977. · Zbl 0372.46058
[9] S. Friedberg and H. Jacquet, Linear periods, J. Reine Angew. Math. 443 (1993), 91-139. · Zbl 0782.11033
[10] D. Ginzburg, S. Rallis, and D. Soudry, On explicit lifts of cusp forms from \(\text{GL}_m\) to classical groups, Ann. of Math. (2) 150 (1999), 807-866. · Zbl 0949.22019
[11] D. Ginzburg, S. Rallis, and D. Soudry, Endoscopic representations of \({\widetilde{\text{Sp}}}_{2n} \), J. Inst. Math. Jussieu 1 (2002), 77-123. · Zbl 1052.11032
[12] D. Ginzburg, S. Rallis, and D. Soudry, The Descent Map from Automorphic Representations of \(\text{GL}(n)\) to Classical Groups, World Scientific, Hackensack, N.J., 2011. · Zbl 1233.11056
[13] L.-K. Hua, On the automorphisms of the symplectic group over any field, Ann. of Math. (2) 49 (1948), 739-759. · Zbl 0032.10502
[14] H. Jacquet, Factorization of period integrals, J. Number Theory 87 (2001), 109-143. · Zbl 1040.11035
[15] H. Jacquet, E. Lapid, and J. Rogawski, Periods of automorphic forms, J. Amer. Math. Soc. 12 (1999), 173-240. · Zbl 1012.11044
[16] H. Jacquet and S. Rallis, Symplectic periods, J. Reine Angew. Math. 423 (1992), 175-197. · Zbl 0734.11035
[17] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic forms, II, Amer. J. Math. 103 (1981), 777-815. · Zbl 0491.10020
[18] R. P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lecture Notes in Math. 544, Springer, Berlin, 1976. · Zbl 0332.10018
[19] E. M. Lapid, “A remark on Eisenstein series” in Eisenstein Series and Applications, Progr. Math. 258, Birkhäuser Boston, Boston, 2008, 239-249. · Zbl 1228.11069
[20] E. M. Lapid, “On Arthur’s asymptotic inner product formula of truncated Eisenstein series” in On Certain \(L\)-Functions, Clay Math. Proc. 13, Amer. Math. Soc., Providence, 2011, 309-331. · Zbl 1242.22025
[21] E. M. Lapid, “On the Harish-Chandra Schwartz space of \(G(F)\ G(\mathbb{A})\)” with an appendix by F. Brumley, in Automorphic Representations and \(L\)-Functions, Tata Inst. Fund. Res. Stud. Math. 22, Tata Inst. Fund. Res., Mumbai, 2013, 335-377. · Zbl 1300.11052
[22] E. M. Lapid and J. D. Rogawski, Periods of Eisenstein series: The Galois case, Duke Math. J. 120 (2003), 153-226. · Zbl 1037.11033
[23] C. Mœglin, Conjectures sur le spectre résiduel, J. Math. Soc. Japan 53 (2001), 395-427. · Zbl 1035.11021
[24] C. Mœglin and J.-L. Waldspurger, Le spectre résiduel de \(\text{GL}(n)\), Ann. Sci. Éc. Norm. Supér. (4) 22 (1989), 605-674. · Zbl 0696.10023
[25] C. Mœglin and J.-L. Waldspurger, Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Math. 113, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0846.11032
[26] O. Offen, Relative spherical functions on \(℘\)-adic symmetric spaces (three cases), Pacific J. Math. 215 (2004), 97-149. · Zbl 1059.22019
[27] O. Offen, On symplectic periods of the discrete spectrum of \(\text{GL}_{2n} \), Israel J. Math. 154 (2006), 253-298. · Zbl 1148.11025
[28] O. Offen, Residual spectrum of \(\text{GL}_{2n}\) distinguished by the symplectic group, Duke Math. J. 134 (2006), 313-357. · Zbl 1220.11072
[29] Y. Sakellaridis and A. Venkatesh, Periods and harmonic analysis on spherical varieties, to appear in Astérisque, preprint, arXiv:1203.0039v4 [math.RT]. · Zbl 1479.22016
[30] T. A. Springer, Some remarks on involutions in Coxeter groups, Comm. Algebra 10 (1982), 631-636. · Zbl 0531.20016
[31] T. A. Springer, “Some results on algebraic groups with involutions” in Algebraic Groups and Related Topics (Kyoto/Nagoya, 1983), Adv. Stud. Pure Math. 6, North-Holland, Amsterdam, 1985, 525-543. · Zbl 0628.20036
[32] J.-L. Waldspurger, La formule de Plancherel pour les groupes \(p\)-adiques (d’après Harish-Chandra), J. Inst. Math. Jussieu 2 (2003), 235-333. · Zbl 1029.22016
[33] S. Yamana, Symplectic periods of the continuous spectrum of \(\text{GL}(2n)\), Ann. Inst. Fourier (Grenoble) 64 (2014), 1561-1580. · Zbl 1396.11079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.