×

Residual spectrum of \(\mathrm{GL}_{2n}\) distinguished by the symplectic group. (English) Zbl 1220.11072

From the introduction: Let \(F\) be a number field and let \(\mathbb A\) be the ring of adèles of \(F\). For any positive integer \(r\) we denote by \(G_r\) the group \(\mathrm{GL}_r\) viewed as an algebraic group over \(F\). We fix an integer \(n\) and denote \(G = G_{2n}\). Let \(K\) be the standard maximal compact of \(G(\mathbb A)\). For any algebraic group \(Q\) defined over \(F\), denote \(Q(\mathbb A)^1=\cap_\chi\text{ker}\,|\chi|\) where \(\chi\) ranges over the algebraic characters of \(Q\). There is a direct sum decomposition \[ L^2\left(G(F)\backslash G(\mathbb A)^1\right) = L^2_{\text{disc}}(G)\oplus L^2_{\text{cont}}(G) \] to a discrete and a continuous part. The discrete part \(L^2_{\text{disc}}(G)\) decomposes into a direct sum of irreducible representations. By an irreducible, discrete spectrum representation of \(G(\mathbb A)^1\) we mean an irreducible summand of \(L^2_{\text{disc}}(G)\).
In this work we determine the irreducible, discrete spectrum representations of \(G(\mathbb A)^1\), that have a nonvanishing symplectic period. This completes the work of H. Jacquet and S. Rallis [J. Reine Angew. Math. 423, 175–197 (1991; Zbl 0734.11035)].

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

Citations:

Zbl 0734.11035

References:

[1] J. Arthur, A trace formula for reductive groups, II : Applications of a truncation operator , Compositio Math. 40 (1980), 87–121. · Zbl 0499.10033
[2] I. N. Bernšteĭn [bernstein] and A. V. Zelevinskiĭ [Zelevinsky], Representations of the group \(\hbox\mathrm GL(n,F),\) where \(F\) is a local non-Archimedean field (in Russian), Uspehi Mat. Nauk 31 (1976), no. 3, 5–70.; English translation in Russian Math. Surveys 31 (1976), 1–68. · Zbl 0342.43017
[3] -, Induced representations of reductive \(\wp\) -adic groups, I, Ann. Sci. École Norm. Sup. (4) 10 (1977), 441–472. · Zbl 0412.22015
[4] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups , 2nd ed., Amer. Math. Soc., Providence, 2000. · Zbl 0980.22015
[5] S. Helgason, A duality for symmetric spaces with applications to group representations , Advances in Math. 5 (1970), 1–154. · Zbl 0209.25403 · doi:10.1016/0001-8708(70)90037-X
[6] -, Groups and Geometric Analysis: Integral Geometry, Invariant Differential Operators, and Spherical Functions , Pure Appl. Math. 113 , Academic Press, Orlando, 1984. · Zbl 0543.58001
[7] M. J. Heumos and S. Rallis, Symplectic-Whittaker models for \(\mathrm \hbox\mathrm GL_ n\) , Pacific J. Math. 146 (1990), 247–279. · Zbl 0752.22012 · doi:10.2140/pjm.1990.146.247
[8] H. Jacquet, “On the residual spectrum of \(\mathrm \hbox\mathrm GL(n)\)” in Lie Group Representations, II (College Park, Md., 1982/1983) , Lecture Notes in Math. 1041 , Springer, Berlin, 1984, 185–208.
[9] H. Jacquet and S. Rallis, Kloosterman integrals for skew symmetric matrices , Pacific J. Math. 154 (1992), 265–283. · Zbl 0778.11032 · doi:10.2140/pjm.1992.154.265
[10] -, Symplectic periods, J. Reine Angew. Math. 423 (1992), 175–197.
[11] A. W. Knapp and D. A. Vogan Jr., Cohomological Induction and Unitary Representations . Princeton Math. Series 45 , Princeton Univ. Press, Princeton, N.J., 1995. · Zbl 0863.22011
[12] R. P. Langlands, Euler Products , Yale Math. Monogr. 1 , Yale Univ. Press, New Haven, Conn., 1971.
[13] C. Moeglin and J.-L. Waldspurger, Le spectre résiduel de \(\mathrm GL(n)\) , Ann. Sci. École Norm. Sup. (4) 22 (1989), 605–674. · Zbl 0696.10023
[14] O. Offen, On symplectic periods of discrete spectrum of,\(\rmGL_2n\) , to appear in Israel J. Math. · Zbl 1148.11025 · doi:10.1007/BF02773610
[15] M. Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case) , Ann. Sci. École Norm. Sup. (4) 19 (1986), 335–382. · Zbl 0614.22005
[16] D. A. Vogan Jr., “Classifying representations by lowest \(K\)-types” in Applications of Group Theory in Physics and Mathematical Physics (Chicago, 1982) , Lectures in Appl. Math. 21 , Amer. Math. Soc., Providence, 1985, 269–288. · Zbl 0563.22010
[17] N. R. Wallach, Real Reductive Groups , II , Pure Appl. Math. 132 -II, Academic Press, Boston, 1992. · Zbl 0785.22001
[18] A. V. Zelevinsky, Induced representations of reductive \(p\) -adic groups, II: On irreducible representations of \(\mathrm \hbox\mathrm GL(n)\), Ann. Sci. École Norm. Sup. (4) 13 (1980), 165–210. · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.