×

The topology of scale-free networks with an S-shaped nonlinear growth characteristic. (English) Zbl 1448.05187

Summary: Calculations were conducted concerning the degree distribution functions of four models with an S-shaped growth characteristic and the preferential attachment rule, based on the mean field theory. Of these models, Model 1 displays the simplest sigmoid function, Model 2 and Model 3 are two extended models, and Model 4 depicts the law of population function. The results show that the graphs of the four degree distribution functions with their different gained control parameters are relatively similar to one another, thus, displaying a power-law form. In addition, a separated method was defined to calculate the degree distribution of single-peak, real-time networks with a symmetric or asymmetric characteristic. Such findings, to a large extent, will enrich the complex theory and could be conducive to understanding the evolutionary dynamics of S-shaped functions as well as other exponential functions.

MSC:

05C82 Small world graphs, complex networks (graph-theoretic aspects)
05C80 Random graphs (graph-theoretic aspects)
05C40 Connectivity
Full Text: DOI

References:

[1] Albert, R., Scale-free networks in cell biology, J Cell Sci, 118, 21, 4947-4957 (2005)
[2] Anghel, M.; Toroczkai, Z.; Bassler, K. E.; Korniss, G., Competition driven network dynamics: emergence of a scale-free leadership structure and collective efficiency, Phys Rev Lett, 92, 5, Article 058701 pp. (2004)
[3] Ariew, A., Under the influence of Malthus’s law of population growth: darwin eschews the statistical techniques of Aldolphe Quetelet, Stud Hist Philos Sci Part C Stud Hist Philos Biol Biomed Sci, 38, 1, 1-19 (2007)
[4] Barabási, A. L.; Albert, R.; Jeong, H., Mean-field theory for scale-free random networks, Phys A: Stat Mech Appl, 272, 1-2, 173-187 (1999)
[5] Barabási, A. L.; Albert, R.; Jeong, H., Scale-free characteristics of random networks: the topology of the world-wide web, Phys A: Stat Mech Appl, 281, 1-4, 69-77 (2000)
[6] Barthélemy, M.; Barrat, A.; Pastor-Satorras, R.; Vespignani, A., Velocity and hierarchical spread of epidemic outbreaks in scale-free networks, Phys Rev Lett, 92, 17, Article 178701 pp. (2003)
[7] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U., Complex networks: structure and dynamics, Phys Rep, 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[8] Buchanan, M., The Social Atom: Why the Rich Get Richer, Cheaters get Caught, and Your Neighbor Usually Looks Like You (2007), Bloomsbury: Bloomsbury New York
[9] Button, K.; Drexler, J., Recovering costs by increasing market share: an empirical critique of the S-curve, J Transp Econ Policy, 39, 39, 391-410 (2005)
[10] Cavagna, A.; Cimarelli, A.; Giardina, I.; Parisi, G.; Santagati, R.; Stefanini, F.; Viale, M., Scale-free correlations in starling flocks, PNAS, 107, 26, 11865-11870 (2010)
[11] Cheang, G. H.L., Approximation with neural networks activated by ramp sigmoids, J Approx Theory, 162, 8, 1450-1465 (2010) · Zbl 1203.82069
[12] Chen, M.; Ma, J.; Hu, Y.; Zhou, F.; Li, J.; Yan, L., Is the S-shaped curve a general law? an application to evaluate the damage resulting from water-induced disasters, Nat Hazards, 78, 1, 497-515 (2015)
[13] Chou, C.; Neelin, J. D.; Chen, C. A.; Tu, J. Y., Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming, J Clim, 22, 8, 1982-2005 (2009)
[14] Dessing, M., Labor supply, the family and poverty: the S-shaped labor supply curve, J Econ Behav Organ, 49, 4, 433-458 (2002)
[15] Doye, J. P., Network topology of a potential energy landscape: a static scale-free network, Phys Rev Lett, 88, 23, Article 238701 pp. (2002)
[16] Du, H.; Gao, Z.; Zhu, Z.; Zheng, J., Impact of traffic demands on load distribution in congested scale-free networks, Int J Mod Phys C, 25, 10, Article 1450055 pp. (2014)
[17] Fan, Z.; Chen, G., Pinning control of scale-free complex networks, (Proceedings of the IEEE international symposium on circuits and systems, ISCAS (2005), Kobe, Japan), 284-287
[18] Ferrara, M., A note on the Solow economic growth model with Richards population growth law, Appl Sci, 13, 13, 36-39 (2011) · Zbl 1218.91121
[19] Fratini, M.; Poccia, N.; Ricci, A.; Campi, G.; Burghammer, M.; Aeppli, G.; Bianconi, A., Scale-free structural organization of oxygen interstitials in \(La_2 CuO_{4+y}\), Nature, 466, 7308, 841-844 (2010)
[20] Furihata, K., A logistic prediction model for individual allowable noise levels, J Acoust Soc Am, 124, 6, 3544-3560 (2008)
[21] Gallos, L. K.; Argyrakis, P., Disease spreading in scale-free networks, PNAS, 95, 16, 9494-9499 (2003)
[22] Goh, K. I.; Kahng, B.; Kim, D., Universal behavior of load distribution in scale-free networks, Phys Rev Lett, 87, 27 Pt 1, Article 278701 pp. (2003) · Zbl 1030.68005
[23] Guida, M.; Maria, F., Topology of the Italian airport network: a scale-free small-world network with a fractal structure, Chaos Solitons Fractals, 31, 3, 527-536 (2007)
[24] Guo, J.; Wang, L., Scale-free networks with the power-law exponent between 1 and 3, Acta Phys Sin, 56, 10, 5635-5639 (2007) · Zbl 1150.90338
[25] Haussen, D. C.; Jadhav, A.; Rebello, L. C.; Belagaje, S.; Anderson, A.; Jovin, T.; …; Nogueira, R. G., Internal carotid artery S-shaped curve as a marker of fibromuscular dysplasia in dissection-related acute ischemic stroke, Interv Neurol, 5, 3-4, 185-192 (2016)
[26] Hayashi, Y., A review of recent studies of geographical scale-free networks, IPSJ Digit Cour, 2, 3, 776-785 (2005)
[27] Hemelrijk, C. K.; Hildenbrandt, H., Scale-free correlations, influential neighbours and speed control in flocks of birds, J Stat Phys, 158, 3, 563-578 (2015) · Zbl 1332.92086
[28] Holme, P.; Kim, B. J., Growing scale-free networks with tunable clustering, Phys Rev E: Stat Nonlinear Soft Matter Phys, 65, 2 Pt 2, Article 026107 pp. (2002)
[29] Ito, Y., Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory, Neural Netw, 4, 3, 385-394 (1991)
[30] Jarne, G.; Sanchez-Choliz, J.; Fatas-Villafranca, F., “S-shaped” curves in economic growth. a theoretical contribution and an application, Evol Inst Econ Rev, 3, 2, 239-259 (2007)
[31] Jia, Y.; Hoberock, J.; Garland, M.; Hart, J. C., On the visualization of social and other scale-free networks, IEEE Trans Vis Comput Graph, 14, 6, 1285-1292 (2008)
[32] Angle, J., Deriving the size distribution of personal wealth from “the rich get richer, the poor get poorer”, J Math Sociol, 18, 1, 27-46 (1993) · Zbl 0789.62092
[33] Khayet, M.; Cojocaru, C., Artificial neural network model for desalination by sweeping gas membrane distillation, Desalination, 308, 102-110 (2013)
[34] Kim, H. J.; Kim, I. M.; Lee, Y.; Kahng, B., Scale-free network in stock markets, J Korean Phys Soc, 40, 6, 1105-1108 (2002)
[35] Kucharavy, D.; Guio, R. D., Application of S-shaped curves, Procedia Eng, 9, 559-572 (2011)
[36] Li, W.; Zhang, X.; Hu, G., How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems, Phys Rev E: Stat Nonlinear Soft Matter Phys, 76, 4 Pt 2, Article 045102 pp. (2007)
[37] Lv, M.; Guo, X.; Chen, J.; Lu, Z.; Nie, T., Second-order centrality correlation in scale-free networks, Int J Mod Phys C, 26, 10, Article 1550116 pp. (2015)
[38] Malthus, T. R., Essay on the principle of population, as it affects the future improvement of society with remarks on the speculation of Mr. Godwin, M. Condorcet, and other writers (1798), Penguin Classics: Penguin Classics Harmondsworth, Middlesex, UK
[39] Dessing, M., Implications for minimum-wage policies of an S-shaped labor-supply curve, J Econ Behav Organ, 53, 4, 543-568 (2004)
[40] Matis, J. H.; Kiffe, T. R.; Matis, T. I.; Stevenson, D. E., Stochastic modeling of aphid population growth with nonlinear, power-law dynamics, Math Biosci, 208, 2, 469-494 (2007) · Zbl 1119.92052
[41] May, R. M.; Lloyd, A. L., Infection dynamics on scale-free networks, Phys Rev E Stat Nonlinear Soft Matter Phys, 64, 6 Pt 2, Article 066112 pp. (2001)
[42] Miranda, L. C.M.; Lima, C. A.S., A new methodology for the logistic analysis of evolutionary S-shaped processes: application to historical time series and forecasting, Technol Forecast Soc Change, 77, 2, 175-192 (2010)
[43] Moore, G. E., Lithography and the future of Moore’s law, Proc SPIE-Int Soc Opt Eng, 2438, 3, 37-42 (1995)
[44] Newman, M. E.J., The structure and function of complex networks, SIAM Rev, 45, 2, 167-256 (2006) · Zbl 1029.68010
[45] Nie, W.; Liu, A.; Su, Y., Cross-domain semantic transfer from large-scale social media, Multimed Syst, 22, 1, 75-85 (2016)
[46] Pastor-Satorras, R.; Vespignani, A., Epidemic dynamics in finite size scale-free networks, Phys Rev E Stat Nonlinear Soft Matter Phys, 65, 3 Pt 2A, Article 035108 pp. (2002)
[47] Perc, M., Phase transitions in models of human cooperation, Phys Lett A, 380, 36, 2803-2808 (2016)
[48] Perc, M.; Gómez-Gardeñes, J.; Szolnoki, A.; Floría, L. M.; Moreno, Y., Evolutionary dynamics of group interactions on structured populations: a review, J R Soc Interface, 10, 80, Article 20120997 pp. (2013)
[49] Pretorius, E. J.; Currin, S., Do the rich get richer and the poor poorer?: The effects of an intervention programme on reading in the home and school language in a high poverty multilingual context, Int J Educ Dev, 30, 1, 67-76 (2010)
[50] Ramsden, E., Carving up population science: eugenics, demography and the controversy over the ’biological law’ of population growth, Soc Stud Sci, 32, 5/6, 857-899 (2002)
[51] Ros, T.; Frewen, P.; Theberge, J.; Michela, A.; Kluetsch, R.; Muller, A.; …; Lanius, R. A., Neurofeedback tunes scale-free dynamics in spontaneous brain activity, Cereb Cortex, 27, 10, 4911-4922 (2016)
[52] Sagduyu, Y. E.; Shi, Y.; Neema, K., Search in combined social and wireless communication networks: delay and success analysis, IEEE Trans Wireless Commun, 14, 9, 4972-4980 (2015)
[53] Santos, F. C.; Pacheco, J. M., Scale-free networks provide a unifying framework for the emergence of cooperation, Phys Rev Lett, 95, 9, Article 098104 pp. (2005)
[54] Tamura, K.; Kobayashi, Y.; Ihara, Y., Evolution of individual versus social learning on social networks, J R Soc Interface, 12, 104, Article 20141285 pp. (2015)
[55] Tress, W.; Petrich, A.; Hummert, M.; Hein, M.; Leo, K.; Riede, M., Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells, Appl Phys Lett, 98, 6, Article 063301 pp. (2011)
[56] Valipour, M.; Banihabib, M. E.; Behbahani, S. M.R., Comparison of the ARMA, ARMIA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir, J Hydrol, 476, 433-441 (2013)
[57] Wang, W. X.; Wang, B. H.; Yin, C. Y.; Xie, Y. B.; Zhou, T., Traffic dynamics based on local routing protocol on a scale-free network, Phys Rev E Stat Nonlinear Soft Matter Phys, 73, 2 Pt 2, Article 026111 pp. (2006)
[58] Wang, X. F.; Chen, G., Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Trans Circuits Syst I Fundam Theory Appl, 49, 1, 54-62 (2002) · Zbl 1368.93576
[59] Wei, C.; Padgham, M.; Barona, P. C.; Blaschke, T., Scale-free relationships between social and landscape factors in urban systems, Sustainability, 9, 1, 84 (2017)
[60] Yan, J.; Assimakopoulos, D., The small-world and scale-free structure of an Internet technological community, Int J Inf Technol Manag, 8, 1, 33-49 (2009)
[61] Yilmaz, E.; Baysal, V.; Ozer, M., Enhancement of temporal coherence via time-periodic coupling strength in a scale-free network of stochastic Hodgkin-Huxley neurons, Phys Lett A, 379, 26-27, 1594-1599 (2015)
[62] Yin, J.; Wang, D.; Wei, X.; Wang, L., Hydraulic improvement to eliminate S-shaped curve in pump turbine, J Fluids Eng, 135, 7, Article 071105 pp. (2013)
[63] Zhang, L.; Chen, J.; Sun, B.; Tang, Y.; Wang, M.; Li, Y.; Xue, S., Nonlinear dynamic evolution and control in a new scale-free networks modeling, Nonlinear Dyn, 76, 2, 1569-1578 (2014)
[64] Zhang, Z.; Rong, L.; Zhou, T., An evolving model for scale-free collaboration networks, Syst Eng Theory Pract, 25, 11, 55-60 (2005)
[65] Laird, S.; Jensen, H. J., A non-growth network model with exponential and 1/k scale-free degree distributions, Europhys Lett, 76, 4, 710-716 (2006)
[66] Wang, Z.; Bauch, C. T.; Bhattacharyya, S.; d’Onofrio, A.; Manfredi, P.; Perc, M.; …; Zhao, D., Statistical physics of vaccination, Phys Rep, 664, 1-113 (2016) · Zbl 1359.92111
[67] Perc, M.; Jordan, J. J.; Rand, D. G.; Wang, Z.; Boccaletti, S.; Szolnoki, A., Statistical physics of human cooperation, Phys Rep, 687, 1-51 (2017) · Zbl 1366.80006
[68] Perc, M., The Matthew effect in empirical data, J R Soc Interface, 11, 98, Article 20140378 pp. (2014)
[69] Helbing, D.; Brockmann, D.; Chadefaux, T.; Donnay, K.; Blanke, U.; Woolley-Meza, O.; …; Perc, M., Saving human lives: what complexity science and information systems can contribute, J Stat Phys, 158, 3, 735-781 (2015) · Zbl 1332.91092
[70] Wang, Z.; Moreno, Y.; Boccaletti, S.; Perc, M., Vaccination and epidemics in networked populations—An introduction, Chaos, Solitons Fractals, 103, 177-183 (2017)
[71] Kenett, D. Y.; Perc, M.; Boccaletti, S., Networks of networks—An introduction, Chaos, Solitons Fractals, 80, 1-6 (2015) · Zbl 1354.00076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.