×

Current progress on \(G_2\)-instantons over twisted connected sums. (English) Zbl 1447.53007

Karigiannis, Spiro (ed.) et al., Lectures and surveys on \(G_2\)-manifolds and related topics. Minischool and workshop on \(G_2\)-manifolds, Fields Institute, Toronto, Canada, August 19–25, 2017. New York, NY: Springer. Fields Inst. Commun. 84, 319-348 (2020).
Summary: We review a method to construct \(G_2\)-instantons over compact \(G_2\)-manifolds arising as the twisted connected sum of a matching pair of Calabi-Yau 3-folds with cylindrical end, based on the series of articles [M. Jardim et al., Bull. Lond. Math. Soc. 49, No. 1, 117–132 (2017; Zbl 1386.14063); the author, Geom. Topol. 19, No. 1, 61–111 (2015; Zbl 1312.53044); G. Menet, J. Nordström and the author, “Construction of \(G_2 \)-instantons viatwisted connected sums”, Preprint, arXiv:1510.03836; the author and T. Walpuski, Geom. Topol. 19, No. 3, 1263–1285 (2015; Zbl 1317.53034)] by the author and others. The construction is based on gluing \(G_2\)-instantons obtained from holomorphic bundles over such building blocks, subject to natural compatibility and transversality conditions. Explicit examples are obtained from matching pairs of semi-Fano 3-folds by an algorithmic procedure based on the Hartshorne-Serre correspondence.
For the entire collection see [Zbl 1445.53002].

MSC:

53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
53C10 \(G\)-structures
53C38 Calibrations and calibrated geometries

References:

[1] Arrondo, E. (2007). A home-made Hartshorne-Serre correspondence. Revista Matematica Complutense, 20, 423-443. · Zbl 1133.14046
[2] Atiyah, M. (1988). New invariants of \(3\)- and \(4\)-dimensional manifolds, The mathematical heritage of Hermann Weyl (pp. 285-299). Durham, NC, 1987. · Zbl 0667.57018
[3] Bryant, R. (1985). Metrics with holonomy \({\rm{G}}_2\) or Spin(7). Lecture Notes in Mathematics, 1111, 269-277. · Zbl 0562.53034 · doi:10.1007/BFb0084595
[4] Bando, S., & Siu, Y. T. (1994). Stable sheaves and Einstein-Hermitian metrics. Geometry and Analysis on Complex Manifolds, 39, 39-50. · Zbl 0880.32004 · doi:10.1142/9789814350112_0002
[5] Corti, A., Haskins, M., Nordström, J., & Pacini, T. (2013). Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds. Geometry and Topology, 17(4), 1955-2059. · Zbl 1273.14081 · doi:10.2140/gt.2013.17.1955
[6] Corti, A., Haskins, M., Nordström, J., & Pacini, T. (2015). \({\rm{G}}_2 \)-manifolds and associative submanifolds via semi-Fano 3-folds. Duke Mathematical Journal, 164(10), 1971-2092. · Zbl 1343.53044
[7] Crowley, D., & Nordström, J. (2014). Exotic \(G_2\)-manifolds. arXiv:1411.0656 [math.AG].
[8] Donaldson, S. K. (2002). Floer homology groups in Yang-Mills theory. Cambridge Tracts in Mathematics (Vol. 147). Cambridge: Cambridge University Press. With the assistance of Furuta, M. & Kotschick, D. · Zbl 0998.53057
[9] Donaldson, S. K. (1985). Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proceedings of the London Mathematical Society, 50(1), 1-26. · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[10] Donaldson, S. K. (1990). Polynomial invariants for smooth four-manifolds. Topology, 29(3), 257-315. · Zbl 0715.57007 · doi:10.1016/0040-9383(90)90001-Z
[11] Donaldson, S. K., & Segal, E. (2011). Gauge theory in higher dimensions, II. Surveys in Differential Geometry, 16, 1-41. · Zbl 1256.53038
[12] Donaldson, S. K., & Thomas, R. P. (1996). Gauge theory in higher dimensions, The geometric universe Oxford, 1998, pp. 31-47. · Zbl 0926.58003
[13] Haskins, M., Hein, H.-J., & Nordström, J. (2015). Asymptotically cylindrical Calabi-Yau manifolds. Journal of Differential Geometry, 101(2), 213-265. · Zbl 1332.32028
[14] Huybrechts, D., & Lehn, M. (2010). The geometry of moduli spaces of sheaves (2nd ed.). Cambridge: Cambridge Mathematical Library. · Zbl 1206.14027 · doi:10.1017/CBO9780511711985
[15] Huybrechts, D., & Lehn, M. (1997). The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31, Friedr. Braunschweig: Vieweg & Sohn. · Zbl 0872.14002
[16] Jardim, M., Menet, G., Prata, D. M., & Sá Earp, H. N. (2017). Holomorphic bundles for higher dimensional gauge theory. Bulletin of the London Mathematical Society, 49(1), 117-132. · Zbl 1386.14063 · doi:10.1112/blms.12017
[17] Joyce, D. D. (2000). Compact manifolds with special holonomy. Oxford Mathematical Monographs. Oxford: Oxford University Press. · Zbl 1027.53052
[18] Joyce, D. D. (1996) Compact Riemannian 7-manifolds with holonomy \({\rm{G}}_2 \). I, II. Journal Differential Geometry, 43(2), 291-328, 329-375. · Zbl 0861.53023
[19] Jacob, A. & Walpuski, T. (2016). Hermitian Yang-Mills metrics on reflexive sheaves over asymptotically cylindrical Kähler manifolds. arXiv:1603.07702v1 [math.DG]. · Zbl 1516.53029
[20] Kovalev, A., & Lee, N.-H. (2011). K3 surfaces with non-symplectic involution and compact irreducible \({\rm{G}}_2 \)-manifolds. Mathematical Proceedings of the Cambridge Philosophical Society, 151(2), 193-218. · Zbl 1228.53064
[21] Kovalev, A. (2003). Twisted connected sums and special Riemannian holonomy. Journal für die reine und angewandte Mathematik, 565, 125-160. · Zbl 1043.53041
[22] Lockhart, R. B., & McOwen, R. C. (1985). Elliptic differential operators on noncompact manifolds. Scuola Normale Superiore di Pisa, Classe di Scienze (4), 12(3), 409-447. · Zbl 0615.58048
[23] Maruyama, M. (1978). Moduli of stable sheaves ii. Journal of Mathematics of Kyoto University, 18, 557-614. · Zbl 0395.14006 · doi:10.1215/kjm/1250522511
[24] Menet, G., Nordström, J., & Sá Earp, H.N. (2017). Construction of \({\rm{G}}_2 \)-instantons via twisted connected sums. arXiv:1510.03836 [math.AG]. To appear in Mathematical Research Letters.
[25] Maz’ya, V. G., & Plamenevskiĭ, B. A. (1978). Estimates in \(L_p\) and in Hölder classes, and the Miranda-Agmon maximum principle for the solutions of elliptic boundary value problems in domains with singular points on the boundary. Mathematische Nachrichten, 81, 25-82.
[26] Milnor, J. W., & Stasheff, J. D. (1974). Characteristic classes. Princeton: Princeton University Press. · Zbl 0298.57008 · doi:10.1515/9781400881826
[27] Pacini, T. (2012). Desingularizing isolated conical singularities: Uniform estimates via weighted sobolev spaces. arXiv:1005.3511v3. To appear in Communications in Analysis and Geometry. · Zbl 1284.46031
[28] Salur, S. (2006). Asymptotically cylindrical ricci-flat manifolds. Proceedings of the American Mathematical Society, 134(10), 3049-3056. · Zbl 1095.53024 · doi:10.1090/S0002-9939-06-08313-4
[29] Salamon, S. (1989). Riemannian geometry and holonomy groups. Pitman Research Notes in Mathematics Series (Vol. 201). · Zbl 0685.53001
[30] Sá Earp, H. N. (2009). Instantons on \({\rm{G}}_2 \)-manifolds. Ph.D. Thesis.
[31] Sá Earp, H. N. (2014). Generalised Chern-Simons theory and \({\rm{G}}_2 \)-instantons over associative fibrations. SIGMA - Symmetry, Integrability and Geometry: Methods and Applications, 10(083). · Zbl 1296.53052
[32] Sá Earp, H. N. (2015). \({\rm{G}}_2 \)-instantons over asymptotically cylindrical manifolds. Geometry and Topology, 19(1), 61-111. · Zbl 1312.53044 · doi:10.2140/gt.2015.19.61
[33] Sá Earp, H. N., & Walpuski, T. (2015). \( \rm{G}_2-\) instantons over twisted connected sums. Geometry & Topology, 19(3), 1263-1285. · Zbl 1317.53034
[34] Thomas, R. (1997). Gauge theories on Calabi-Yau manifolds. D. Phil. thesis, University of Oxford.
[35] Tian, G. (2000). Gauge theory and calibrated geometry. I. Annals of Mathematics (1), 151(1), 193-268. · Zbl 0957.58013 · doi:10.2307/121116
[36] Tyurin, A. (2012) Vector bundles, Universitätsverlag Göttingen. In Fedor Bogomolov, Alexey Gorodentsev, Victor Pidstrigach, Miles Reid and Nikolay Tyurin (Eds.), Collected works (Vol. I, p. 330).
[37] Uhlenbeck, K. K., & Yau, S-T. (1986). On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Communications on Pure and Applied Mathematics, 39(S1), S257-S293. · Zbl 0615.58045
[38] Walpuski, T. (2013). \({\rm{G}}_2 \)-instantons on generalised Kummer constructions. Geometry and Topology, 17(4), 2345-2388. · Zbl 1278.53051 · doi:10.2140/gt.2013.17.2345
[39] Walpuski, T. · Zbl 1350.53032 · doi:10.4310/MRL.2016.v23.n2.a11
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.