×

\(G_{2}\)-instantons over asymptotically cylindrical. (English) Zbl 1312.53044

Summary: A concrete model for a \(7\)-dimensional gauge theory under special holonomy is proposed, within the paradigm of Donaldson and Thomas, over the asymptotically cylindrical \(G_2\)-manifolds provided by Kovalev’s solution to a noncompact version of the Calabi conjecture. One obtains a solution to the \(G_2\)-instanton equation from the associated Hermitian Yang-Mills problem, to which the methods of Simpson et al are applied, subject to a crucial asymptotic stability assumption over the “boundary at infinity”.

MSC:

53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
58J35 Heat and other parabolic equation methods for PDEs on manifolds
53C29 Issues of holonomy in differential geometry

References:

[1] D Baraglia, \(G_2\) geometry and integrable systems, PhD thesis, University of Oxford (2009)
[2] W P Barth, Some properties of stable rank-\(2\) vector bundles on \(\mathbbP_n\), Math. Ann. 226 (1977) 125 · Zbl 0332.32021 · doi:10.1007/BF01360864
[3] W P Barth, K Hulek, C A M Peters, A Van de Ven, Compact complex surfaces, Ergeb. Math. Grenzgeb. 4, Springer (2004) · Zbl 1036.14016 · doi:10.1007/978-3-642-57739-0
[4] R L Bryant, Metrics with holonomy \(G_2\) or \(\mathrm{Spin}(7)\) (editors F Hirzebruch, J Schwermer, S Suter), Lecture Notes in Math. 1111, Springer (1985) 269 · doi:10.1007/BFb0084595
[5] R L Bryant, S M Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829 · Zbl 0681.53021 · doi:10.1215/S0012-7094-89-05839-0
[6] M Buttler, The geometry of \(\mathrm{CR}\)-manifolds, PhD thesis, University of Oxford (1999)
[7] S K Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. 50 (1985) 1 · Zbl 0529.53018 · doi:10.1112/plms/s3-50.1.1
[8] S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231 · Zbl 0627.53052 · doi:10.1215/S0012-7094-87-05414-7
[9] S K Donaldson, The approximation of instantons, Geom. Funct. Anal. 3 (1993) 179 · Zbl 0778.57010 · doi:10.1007/BF01896022
[10] S K Donaldson, Floer homology groups in Yang-Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002) · Zbl 0998.53057 · doi:10.1017/CBO9780511543098
[11] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990) · Zbl 0820.57002
[12] J Eells Jr., J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109 · Zbl 0122.40102 · doi:10.2307/2373037
[13] M Fernández, A Gray, Riemannian manifolds with structure group \(G_2\), Ann. Mat. Pura Appl. 132 (1982) 19 · Zbl 0524.53023 · doi:10.1007/BF01760975
[14] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Springer (2001) · Zbl 1042.35002
[15] P Griffiths, J Harris, Principles of algebraic geometry, Wiley (1994) · Zbl 0836.14001 · doi:10.1002/9781118032527
[16] A Grigoryan, Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom. 45 (1997) 33 · Zbl 0865.58042
[17] G Y Guo, Yang-Mills fields on cylindrical manifolds and holomorphic bundles, I, Comm. Math. Phys. 179 (1996) 737 · Zbl 0857.58011 · doi:10.1007/BF02100107
[18] R S Hamilton, Harmonic maps of manifolds with boundary, Lecture Notes in Math. 471, Springer (1975) · Zbl 0308.35003
[19] D Huybrechts, Complex geometry, Springer (2005) · Zbl 1055.14001 · doi:10.1007/b137952
[20] M Jardim, Stable bundles on \(3\)-fold hypersurfaces, Bull. Braz. Math. Soc. 38 (2007) 649 · Zbl 1139.14035 · doi:10.1007/s00574-007-0067-9
[21] M B Jardim, H N Sá Earp, Monad constructions of asymptotically stable bundles, in preparation
[22] D D Joyce, Compact manifolds with special holonomy, Oxford Univ. Press (2000) · Zbl 1027.53052
[23] A Kovalev, Twisted connected sums and special Riemannian holonomy, J. Reine Angew. Math. 565 (2003) 125 · Zbl 1043.53041 · doi:10.1515/crll.2003.097
[24] A Kovalev, From Fano threefolds to compact \(G_2\)-manifolds, Clay Math. Proc. 3, Amer. Math. Soc. (2004) 193 · Zbl 1158.53331
[25] J W Milnor, J D Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton Univ. Press (1974) · Zbl 0298.57008
[26] J Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577 · Zbl 0111.09302 · doi:10.1002/cpa.3160140329
[27] S Mukai, On the moduli space of bundles on \(K3\) surfaces, I, Tata Inst. Fund. Res. Stud. Math. 11, Tata Inst. (1987) 341 · Zbl 0674.14023
[28] S Mukai, Fano \(3\)-folds (editors G Ellingsrud, C Peskine, G Sacchiero, S A Strømme), London Math. Soc. Lecture Note Ser. 179, Cambridge Univ. Press (1992) 255 · Zbl 0774.14037 · doi:10.1017/CBO9780511662652.018
[29] C Okonek, M Schneider, H Spindler, Vector bundles on complex projective spaces, Progress in Math. 3, Birkhäuser (1980) · Zbl 0438.32016
[30] W Rudin, Principles of mathematical analysis, McGraw-Hill (1976) · Zbl 0346.26002
[31] H N Sá Earp, \(G_2\)-instantons over asymptotically cylindrical manifolds, · Zbl 1312.53044 · doi:10.2140/gt.2015.19.61
[32] H N Sá Earp, \(G_2\)-instantons over Kovalev manifolds, II, in preparation
[33] H N Sá Earp, Instantons on \(G_2\)-manifolds, PhD thesis, Imperial College London (2009)
[34] S Salamon, Riemannian geometry and holonomy groups, Pitman Res. Notes Math. 201, Longman (1989) · Zbl 0685.53001
[35] C T Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867 · Zbl 0669.58008 · doi:10.2307/1990994
[36] C H Taubes, Metrics, connections and gluing theorems, CBMS Regional Conf. Series in Math. 89, Amer. Math. Soc. (1996) · Zbl 0952.53002
[37] R Thomas, Gauge theory on Calabi-Yau manifolds, PhD thesis, Univeristy of Oxford (1997)
[38] T Walpuski, \(G_2\)-instantons on generalised Kummer constructions, I, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.