×

Dynamics of weighted translations on Orlicz spaces. (English) Zbl 1447.47015

Let \(G\) be a locally compact group and consider the Orlicz space \(L^\Phi(G)\), defined by means of a Young function \(\Phi\) through the usual Luxemburg norm. The author studies recurrence and chaoticity properties of weighted shifts \(T_{a,w}f(x):= w(x) f(xa^{-1})\), where \(w:G\to(0,\infty)\) is a weight.
An operator \(T\) acting on a (separable Banach) space \(X\) is called topologically multiply recurrent if, for every positive integer \(L\) and every nonempty \(U\subset X\), there exists \(n\in\mathbb N\) such that \(U\cap T^{-n}U\cap\cdots\cap T^{-Ln}U\neq \emptyset\). On the other hand, \(T\) is said to be chaotic if it has a dense set of periodic points and there exists \(x\in X\) whose orbit under \(T\), that is, \(\mathrm{Orb}(x,T)=\{T^nx: n\in\mathbb N\}\), is dense in \(X\) (namely, \(T\) is hypercyclic and has a dense set of periodic points).
The author gives a characterization of topologically multiply recurrent weighted shifts \(T_{a,w}\) on \(L^\Phi(G)\) by means of a rather technical condition involving \(a\) and \(w\). The author also provides a characterization of chaoticity by means of a condition on \(a,w\). It turns out that \(T_{a,w}\) is chaotic exactly when its set of periodic elements is dense (certain elements \(a\in G\) have to be a priori excluded; these are the periodic elements of \(G\) which generate a compact subgroup \(G(a)\)). A consequence of these results is that, if \(a\in G\) is a periodic and the weighted shift \(T_{a,w}\) is chaotic on \(L^\Phi(G)\), then it is topologically multiply recurrent.

MSC:

47A16 Cyclic vectors, hypercyclic and chaotic operators
37B02 Dynamics in general topological spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B25 Maximal functions, Littlewood-Paley theory
43A70 Analysis on specific locally compact and other abelian groups

References:

[1] Abakumov, E.; Kuznetsova, Y., Density of translates in weighted \(L^p\) spaces on locally compact groups, Monatsh. Math., 183, 397-413 (2017) · Zbl 1420.47003 · doi:10.1007/s00605-017-1046-x
[2] Ansari, Si, Existence of hypercyclic operators on topological vector spaces, J. Funct. Anal., 148, 384-390 (1997) · Zbl 0898.47019 · doi:10.1006/jfan.1996.3093
[3] Azimi, Mr; Akbarbaglu, I., Hypercyclicity of weighted translations on Orlicz spaces, Oper. Matrices, 12, 27-37 (2018) · Zbl 1462.47004 · doi:10.7153/oam-2018-12-03
[4] Bayart, F.; Matheron, É., Dynamics of Linear Operators (2009), Cambridge: Cambridge University Press, Cambridge · Zbl 1187.47001
[5] Bayart, F.; Bermúdez, T., Semigroups of chaotic operators, Bull. Lond. Math. Soc., 41, 823-830 (2009) · Zbl 1182.47007 · doi:10.1112/blms/bdp055
[6] Bayart, F.; Grivaux, S., Invariant Gaussian measures for operators on Banach spaces and linear dynamics, Proc. Lond. Math. Soc., 94, 181-210 (2007) · Zbl 1115.47006 · doi:10.1112/plms/pdl013
[7] Bermúdez, T.; Bonilla, A.; Conejero, Ja; Peris, A., Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces, Studia Math., 170, 57-75 (2005) · Zbl 1064.47006 · doi:10.4064/sm170-1-3
[8] Bernal-González, L., On hypercyclic operators on Banach spaces, Proc. Am. Math. Soc., 127, 1003-1010 (1999) · Zbl 0911.47020 · doi:10.1090/S0002-9939-99-04657-2
[9] Bonet, J.; Martinez-Gimenez, F.; Peris, A., Linear chaos on Frechet spaces, Int. J. Bifurc. Chaos, 13, 1649-1655 (2003) · Zbl 1079.47008 · doi:10.1142/S0218127403007497
[10] Chen, C-C, Chaotic weighted translations on groups, Arch. Math., 97, 61-68 (2011) · Zbl 1234.47003 · doi:10.1007/s00013-011-0262-1
[11] Chen, Chung-Chuan, Chaos for Cosine Operator Functions Generated by Shifts, International Journal of Bifurcation and Chaos, 24, 9, 1450108 (2014) · Zbl 1301.47063 · doi:10.1142/S0218127414501089
[12] Chen, C-C, Recurrence for weighted translations on groups, Acta Math. Sci., 36B, 443-452 (2016) · Zbl 1363.37003 · doi:10.1016/S0252-9602(16)30011-X
[13] Chen, C-C, Recurrence of cosine operator functions on groups, Can. Math. Bull., 59, 693-734 (2016) · Zbl 1356.47013 · doi:10.4153/CMB-2016-011-2
[14] Chen, C-C; Chu, C-H, Hypercyclicity of weighted convolution operators on homogeneous spaces, Proc. Am. Math. Soc., 137, 2709-2718 (2009) · Zbl 1177.47013 · doi:10.1090/S0002-9939-09-09889-X
[15] Chen, C-C; Chu, C-H, Hypercyclic weighted translations on groups, Proc. Am. Math. Soc., 139, 2839-2846 (2011) · Zbl 1221.47017 · doi:10.1090/S0002-9939-2011-10718-4
[16] Chen, K-Y, On aperiodicity and hypercyclic weighted translation operators, J. Math. Anal. Appl., 462, 1669-1678 (2018) · Zbl 1481.47007 · doi:10.1016/j.jmaa.2018.02.062
[17] Chilin, V.; Litvinov, S., Individual ergodic theorems in noncommutative Orlicz spaces, Positivity, 21, 49-59 (2017) · Zbl 1459.47006 · doi:10.1007/s11117-016-0402-8
[18] Costakis, G.; Manoussos, A.; Parissis, I., Recurrent linear operators, Complex Anal. Oper. Theory, 8, 1601-1643 (2014) · Zbl 1325.47019 · doi:10.1007/s11785-013-0348-9
[19] Costakis, G.; Parissis, I., Szemerèdi’s theorem, frequent hypercyclicity and multiple recurrence, Math. Scand., 110, 251-272 (2012) · Zbl 1246.47003 · doi:10.7146/math.scand.a-15207
[20] Costakis, G.; Sambarino, M., Topologically mixing hypercyclic operators, Proc. Am. Math. Soc., 132, 385-389 (2004) · Zbl 1054.47006 · doi:10.1090/S0002-9939-03-07016-3
[21] Delaubenfels, R.; Emamirad, H., Chaos for functions of discrete and continuous weighted shift operators, Ergod. Theory Dyn. Syst., 21, 1411-1427 (2001) · Zbl 0997.47027 · doi:10.1017/S0143385701001675
[22] Desch, W.; Schappacher, W.; Webb, Gf, Hypercyclic and chaotic semigroups of linear operators, Ergod. Theory Dyn. Syst., 17, 793-819 (1997) · Zbl 0910.47033 · doi:10.1017/S0143385797084976
[23] Grosse-Erdmann, K-G, Hypercyclic and chaotic weighted shifts, Studia Math., 139, 47-68 (2000) · Zbl 0991.47013 · doi:10.4064/sm-139-1-47-68
[24] Grosse-Erdmann, K-G; Peris, A., Linear Chaos (2011), Berlin: Universitext, Springer, Berlin · Zbl 1246.47004
[25] Hästö, Pa, The maximal operator on generalized Orlicz spaces, J. Funct. Anal., 269, 4038-4048 (2015) · Zbl 1338.47032 · doi:10.1016/j.jfa.2015.10.002
[26] Han, S-A; Liang, Y-X, Disjoint hypercyclic weighted translations generated by aperiodic elements, Collect. Math., 67, 347-356 (2016) · Zbl 1384.47004 · doi:10.1007/s13348-015-0136-0
[27] Kalmes, T., Hypercyclic, mixing, and chaotic \(C_0\)-semigroups induced by semiflows, Ergod. Theory Dyn. Syst., 27, 1599-1631 (2007) · Zbl 1134.37006 · doi:10.1017/S0143385707000144
[28] Kostić, M., Abstract Volterra Integro-Differential Equations (2015), Boca Raton: CRC Press, Boca Raton · Zbl 1318.45004
[29] León-Saavedra, F., Operators with hypercyclic Cesàro means, Studia Math., 152, 201-215 (2002) · Zbl 1041.47004 · doi:10.4064/sm152-3-1
[30] Martinez-Gimenez, F.; Peris, A., Chaotic polynomials on sequence and function spaces, Int. J. Bifurc. Chaos, 20, 2861-2867 (2010) · Zbl 1202.37044 · doi:10.1142/S0218127410027416
[31] Osancliol, A.; Öztop, S., Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc., 99, 399-414 (2015) · Zbl 1338.46039 · doi:10.1017/S1446788715000257
[32] Piaggio, Mc, Orlicz spaces and the large scale geometry of Heintze groups, Math. Ann., 368, 433-481 (2017) · Zbl 1421.53054 · doi:10.1007/s00208-016-1430-1
[33] Rao, Mm; Ren, Zd, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics (1991), New York: Dekker, New York · Zbl 0724.46032
[34] Salas, H., Hypercyclic weighted shifts, Trans. Am. Math. Soc., 347, 993-1004 (1995) · Zbl 0822.47030 · doi:10.1090/S0002-9947-1995-1249890-6
[35] Tanaka, M., Property \((T_{L^\Phi })\) and property \((F_{L^\Phi })\) for Orlicz spaces \(L^\Phi \), J. Funct. Anal., 272, 1406-1434 (2017) · Zbl 1357.22002 · doi:10.1016/j.jfa.2016.12.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.