×

A regularity-aware algorithm for variational data assimilation of an idealized coupled atmosphere-ocean model. (English) Zbl 1447.35330

Summary: We study the problem of determining through a variational data assimilation approach the initial condition for a coupled set of nonlinear partial differential equations from which a model trajectory emerges in agreement with a given set of time-distributed observations. The partial differential equations describe an idealized coupled atmospheric-ocean model on a rotating torus. The model consist of the viscous shallow-water equations in geophysical scaling that represents the large-scale atmospheric dynamics coupled via a simplified but physically plausible coupling to a model that represents the large-scale ocean dynamics and consists of the incompressible two-dimensional Navier-Stokes equations and an advection-diffusion equation. We propose a variational algorithm (4D-Var) of the coupled data assimilation problem that is solvable and computable. This algorithm relies on the use of a variational cost functional that is tailored to the regularity of the coupled model as well as to the regularity of the observations by means of derivative-based norms. We support this proposal by developing regularity results for an idealized coupled atmospheric-ocean model using the concept of classical solutions. Based on these results we formulate a suitable cost functional. For this cost functional we prove the existence of optimal initial conditions in the sense of minimizers of the cost functional and characterize the minimizers by a first-order necessary condition involving the coupled adjoint equations. We prove local convergence of a gradient-based descent algorithm to optimal initial conditions using second-order adjoint information. Instrumental for our results is the use of suitable Sobolev norms instead of the standard Lebesgue norms in the cost functional. The index of the actual Sobolev space provides an additional scale selective mechanisms in the variational algorithm.

MSC:

35Q86 PDEs in connection with geophysics
35Q35 PDEs in connection with fluid mechanics
35A15 Variational methods applied to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
76U60 Geophysical flows
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B65 Smoothness and regularity of solutions to PDEs
49J20 Existence theories for optimal control problems involving partial differential equations
49M29 Numerical methods involving duality
86-08 Computational methods for problems pertaining to geophysics
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
86A22 Inverse problems in geophysics

References:

[1] Abergel, F., Temam, R.: On some control problems in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303-325 (1990) · Zbl 0708.76106 · doi:10.1007/BF00271794
[2] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Academic Press, Cambridge (2003) · Zbl 1098.46001
[3] Agoshkov, V.I., Ipatova, V.M.: Solvability of the observation data assimilation problem in the three-dimensional model of ocean dynamics. Differ. Equ. 43, 1088-1100 (2007) · Zbl 1181.86004 · doi:10.1134/S0012266107080071
[4] Altaf, M.U., Titi, E.S., Gebrael, T., Knio, O.M., Zhao, L., McCabe, M.F., Hoteit, I.: Downscaling the 2D Benard convection equations using continuous data assimilation. Comput. Geosci. 21, 393-410 (2017) · Zbl 1383.65088 · doi:10.1007/s10596-017-9619-2
[5] Bardos, C., Pironneau, O.: Data assimilation for conservation laws. Methods Appl. Anal. 12, 103-134 (2005) · Zbl 1114.35122
[6] Bewley, T.R., Moin, P., Temam, R.: DNS-based predictive control of turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447, 179-225 (2001) · Zbl 1036.76027 · doi:10.1017/S0022112001005821
[7] Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow-water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211-223 (2003) · Zbl 1037.76012 · doi:10.1007/s00220-003-0859-8
[8] Bresch, D.: Shallow-water equations and related topics. Handb. Differ. Equ. 5, 1-104 (2009) · Zbl 1193.35147
[9] Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166, 245-267 (2007) · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[10] Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988) · Zbl 0687.35071
[11] Dijkstra, H.A.: Nonlinear Physical Oceanography. Springer, Berlin (2005)
[12] Evans, L.C.: Partial Differential Equations. American Mathematical Society, Philadelphia (1998) · Zbl 0902.35002
[13] Farhat, A., Lunasin, E., Titi, E.S.: On the charney conjecture of data assimilation employing temperature measurements alone: the paradigm of 3D planetary geostrophic model. Math. Clim. Weather Forecast. 2, 61-74 (2016) · Zbl 1364.86017
[14] Fedorov, AV; Goudie, A. (ed.); Cuff, D. (ed.), Ocean-atmosphere coupling, 369-374 (2008), Oxford
[15] Fowler, A.M., Lawless, A.S.: An idealized study of coupled atmosphere-ocean 4D-Var in the presence of model error. Mon. Weather Rev. 144, 4007-4030 (2016) · doi:10.1175/MWR-D-15-0420.1
[16] Frolov, S., Bishop, C.H., Holt, T., Cummings, J., Kuhl, D.: Facilitating strongly coupled ocean-atmosphere data assimilation with an interface solver. Mon. Weather Rev. 144, 3-20 (2016) · doi:10.1175/MWR-D-15-0041.1
[17] Hoteit, I., Cornuelle, B., Köl, A., Stammer, D.: Treating strong adjoint sensitivities in tropical eddy-permitting variational data assimilation. Q. J. R. Meteorol. Soc. 131, 3659-3682 (2005) · doi:10.1256/qj.05.97
[18] Kalnay, E.: Atmosheric Modeling, Data Assimilation and Predictability. Cambridge University Press, Cambridge (2003)
[19] Klainermann, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[20] Le Dimet, F.X., Navon, I.M., Daescu, D.: Second-order information in data assimilation. Mon. Weather Rev. 130, 629-648 (2002) · doi:10.1175/1520-0493(2002)130<0629:SOIIDA>2.0.CO;2
[21] Lions, J-L; Temam, R.; Wang, S.; Oden, JT (ed.), Models of the coupled atmosphere and ocean, No. 1, 3-54 (1993), Amsterdam · Zbl 0805.76011
[22] Lions, J-L; Temam, R.; Wang, S.; Oden, JT (ed.), Numerical analysis of coupled atmosphere-ocean models, No. 1, 55-120 (1993), Amsterdam · Zbl 0805.76052
[23] Lions, J.-L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models. J. Math. Pures Appl. 74(2), 105-163 (1995) · Zbl 0866.76025
[24] Lu, J., Hsieh, W.W.: On determining initial conditions and parameters in a simple coupled atmosphere-ocean model by adjoint data assimilation. Tellus 50 A, 534-544 (1998) · doi:10.3402/tellusa.v50i4.14531
[25] Majda, A.: Introduction to PDEs and Waves for Atmosphere and Ocean, Courant Lecture Notes in Mathematics, vol. 5. AMS, New York (2003) · Zbl 1278.76004
[26] Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) · Zbl 0983.76001
[27] Maz’ya, V.: Sobolev Spaces: With Applications to Elliptic Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, vol. 341. Springer, Berlin (2011) · Zbl 1217.46002 · doi:10.1007/978-3-642-15564-2
[28] Neelin, J.D., Battisti, D.S., Hirst, A.C., Jin, F.-F., Wakata, Y., Yamagata, T., Zebiak, S.E.: ENSO theory. J. Geophys. Res. 103, 14261-14290 (1998) · doi:10.1029/97JC03424
[29] Penny, S.G., Akella, S., Alves, O., Bishop, C., Buehner, M., Chevallier, M., Counillon, F., Draper, C., Frolov, S., Fujii, Y., Karspeck, A., Kumar, A, Laloyaux, P., Mahfouf, J.-F.r, Martin, M., Pena, M., de Rosnay, P., Subramanian, A., Tardif, R., Wang, Y., Wu, X.: Coupled data assimilation for integrated earth system analysis and prediction: goals, challenges and recommendations. In: WWRP 2017 - 3, World Meteorological Organization, 2017. https://www.wmo.int/pages/prog/arep/wwrp/new/documents/Final_WWRP_2017_3_27_July.pdf
[30] Sigura, N., Awaji, T., Masuda, S., Mochizuki, T., Toyoda, T., Miyama, T., Igarashi, H., Ishikawa, Y.: Development of a four-dimensional variational data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations. J. Geophys. Res. 113, C10017 (2008) · doi:10.1029/2008JC004741
[31] Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., Marshall, J.: The global ocean circulation during 1992-1997, estimated from ocean observations and a general circulation model. J. Geophys. Res. 107(C9), 3118 (2002) · doi:10.1029/2001JC000888
[32] Sullivan, P.P., McWilliams, J.C.: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 19-41 (2010) · Zbl 1345.76032 · doi:10.1146/annurev-fluid-121108-145541
[33] Tachim Medjo, T., Temam, R., Ziane, M.: Optimal and robust control of fluid flow: some theoretical and computational aspects. Appl. Mech. Rev. 61, 1-23 (2008) · Zbl 1145.76341
[34] Temam, R.: Navier-Stokes equations and nonlinear functional analysis. In: SIAM CBMS-NSF Regional Conference Series in Applied Mathematics (1995) · Zbl 0833.35110
[35] Ulbrich, S.: A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41(3), 740-797 (2002) · Zbl 1019.49026 · doi:10.1137/S0363012900370764
[36] Vallis, G.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2006) · Zbl 1374.86002 · doi:10.1017/CBO9780511790447
[37] Wang, Z., Navon, I.M., Le Dimet, F.X., Zou, X.: The second order adjoint analysis: theory and application. Meteorol. Atmos. Phys. 50, 3-20 (1992) · doi:10.1007/BF01025501
[38] Washington, W.M., Parkinson, C.L.: Introduction To Three-dimensional Climate Modeling. University Science Books, Herndon (2005) · Zbl 0655.76003
[39] Weaver, A., Courtier, P.: Correlation modelling on the sphere using a generalized diffusion equation. Q. J. R. Meteorol. Soc. 127, 1815-1846 (2001) · doi:10.1002/qj.49712757518
[40] Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge University Press, Cambridge (1997) · Zbl 0886.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.