×

Global solutions to a model with Dirichlet boundary conditions for interface motion by interface diffusion. (English) Zbl 1446.82059

Summary: We prove the global existence of weak solutions to an initial-boundary value problem for a new phase-field model, which is a system consisting of a degenerate parabolic equation of fourth-order for an order parameter coupled to a linear elasticity sub-system. This model is applied to describe, at the mesoscopic scale, the motion of grain boundaries in elastically deformable solids. One typical example of this process is sintering. The boundary conditions for this order parameter are of Dirichlet type.
©2020 American Institute of Physics

MSC:

82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
35K55 Nonlinear parabolic equations
35K65 Degenerate parabolic equations
74A50 Structured surfaces and interfaces, coexistent phases
74B10 Linear elasticity with initial stresses
35G16 Initial-boundary value problems for linear higher-order PDEs
35D30 Weak solutions to PDEs
Full Text: DOI

References:

[1] Kang, S. J., Sintering Densification, Grain Growth, and Microstructure (2005), Elsevier Butterworth-Heinemann: Elsevier Butterworth-Heinemann, Oxford
[2] Cahn, J. W.; Hilliard, J. E., Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys., 28, 258-267 (1958) · Zbl 1431.35066 · doi:10.1063/1.1744102
[3] Chen, L.-Q., Phase-field models for microstructure evolution, Annu. Rev. Mater. Res., 32, 113-140 (2002) · doi:10.1146/annurev.matsci.32.112001.132041
[4] Steinbach, I., Phase-field models in materials science, Model. Simul. Mater. Sci. Eng., 17, 073001-1-073001-31 (2009) · doi:10.1088/0965-0393/17/7/073001
[5] Steinbach, I., Phase-field model for microstructure evolution at the mesoscopic scale, Annu. Rev. Mater. Res., 43, 1, 89-107 (2013) · doi:10.1146/annurev-matsci-071312-121703
[6] van der Waals, J. D., The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20, 2, 200-244 (1979) · Zbl 1245.82006 · doi:10.1007/bf01011514
[7] Alber, H.-D., Evolving microstructure and homogenization, Contin. Mech. Thermodyn., 12, 235-286 (2000) · Zbl 0983.74045 · doi:10.1007/s001610050137
[8] Alber, H.-D.; Zhu, P., Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66, 2, 680-699 (2006) · Zbl 1096.35068 · doi:10.1137/050629951
[9] Alber, H.-D.; Zhu, P., Evolution of phase boundaries by configurational forces, Arch. Ration. Mech. Anal., 185, 235-286 (2007) · Zbl 1117.74045 · doi:10.1007/s00205-007-0054-8
[10] Alber, H.-D.; Zhu, P., Solutions to a model for interface motion by interface diffusion, Proc. - R. Soc. Edinburgh, Sect. A: Math., 138, 923-955 (2008) · Zbl 1168.35024 · doi:10.1017/s0308210507000170
[11] Zhu, P., Solid-Solid Phase Transitions Driven by Configurational Forces: A Phase-Field Model and its Validity (2011), Lambert Academy Publishing (LAP): Lambert Academy Publishing (LAP), Germany
[12] Alt, W. H.; Pawlow, I., On the entropy principle of phase transition models witha conserved order parameter, Adv. Math. Sci. Appl., 6, 1, 291-376 (1996) · Zbl 0855.35122
[13] Elliott, C. M.; Garcke, H., On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27, 404-423 (1996) · Zbl 0856.35071 · doi:10.1137/s0036141094267662
[14] Barrett, J. W.; Blowey, J. F.; Garcke, H., Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37, 1, 286-318 (2000) · Zbl 0947.65109 · doi:10.1137/s0036142997331669
[15] Sheng, W.; Zhu, P., Viscosity solutions to a model for solid-solid phase transitions driven by material forces, Nonlinear Anal.: Real World Appl., 39, 14-32 (2018) · Zbl 1462.74127 · doi:10.1016/j.nonrwa.2017.05.003
[16] Abels, H.; Bosia, S.; Grasselli, M., Cahn-Hilliard equation with nonlocal singular free energies, Ann. Mat. Pura Appl., 194, 1071-1106 (2015) · Zbl 1320.35083 · doi:10.1007/s10231-014-0411-9
[17] Ainsworth, M.; Mao, Z., Analysis and approximation of a fractional Cahn-Hilliard equation, SIAM J. Numer. Anal., 55, 1689-1718 (2017) · Zbl 1369.65124 · doi:10.1137/16m1075302
[18] Bosia, S.; Conti, M.; Grasselli, M., On the Cahn-Hilliard-Brinkman system, Commun. Math. Sci., 13, 1541-1567 (2015) · Zbl 1330.35313 · doi:10.4310/cms.2015.v13.n6.a9
[19] Cahn, J. W.; Elliott, C. M.; Novick-Cohen, A., The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature, Eur. J. Appl. Math., 7, 287-301 (1996) · Zbl 0861.35039 · doi:10.1017/s0956792500002369
[20] Pietrus, A.; Carrive, M.; Miranville, A., The Cahn-Hilliard equation for deformable elastic continua, Adv. Math. Sci. Appl., 10, 2, 539-569 (2000) · Zbl 0987.35156
[21] Garcke, H., On Cahn-Hilliard systems with elasticity, Proc. - R. Soc. Edinburgh, Sect. A: Math., 133, 307-331 (2003) · Zbl 1130.74037 · doi:10.1017/s0308210500002419
[22] Bernis, F.; Friedman, A., Higher order nonlinear degenerate parabolic equations, J. Differ. Equations, 83, 179-206 (1990) · Zbl 0702.35143 · doi:10.1016/0022-0396(90)90074-y
[23] Ladyzenskaya, O.; Solonnikov, V.; Uralceva, N., Linear and Quasilinear Equations of Parabolic Type (1968), AMS: AMS, Providence, RI · Zbl 0174.15403
[24] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society · Zbl 0902.35002
[25] Eidelman, S. D., Parabolic Systems (1969), North-Holland: North-Holland, Amsterdam · Zbl 0181.37403
[26] Lions, J., Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires (1969), Dunod Gauthier-Villars: Dunod Gauthier-Villars, Paris · Zbl 0189.40603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.