×

Evolution of phase boundaries by configurational forces. (English) Zbl 1117.74045

Summary: We study an initial-boundary value problem modeling the evolution of phase interfaces in materials showing martensitic transformations. The model, which is derived rigorously from a sharp interface model with phase interfaces driven by configurational forces and which generalizes that model, consists of the equations of linear elasticity coupled with a nonlinear partial differential equation of hyperbolic character governing the evolution of the order parameter. It is proved that in one space dimension, global solutions exist for which the order parameter belongs to the space of functions of bounded variation. Other models for interface motion by martensitic transformations and by interface diffusion are suggested.

MSC:

74N20 Dynamics of phase boundaries in solids
74N05 Crystals in solids
74N25 Transformations involving diffusion in solids
35Q72 Other PDE from mechanics (MSC2000)
Full Text: DOI

References:

[1] Abeyaratne R., Knowles J.K. (1990). On the driving traction acting on a surface of strain discontinuity in a continuum. J. Mech. Phys. Solids 38: 345–360 · Zbl 0713.73030 · doi:10.1016/0022-5096(90)90003-M
[2] Alber H.-D.(2000). Evolving microstructure and homogenization. Contin. Mech. Thermodyn. 12: 235–286 · Zbl 0983.74045 · doi:10.1007/s001610050137
[3] Alber H.-D., Zhu P. (2006). Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces. SIAM J. Appl. Math. 66: 680–699 · Zbl 1096.35068 · doi:10.1137/050629951
[4] Alt H.W., Pawlow I.(1996). On the entropy principle of phase transition models with a conserved order parameter. Adv. Math. Sci. Appl. 6, 291–376 · Zbl 0855.35122
[5] Barles G., Perthame B. (1987). Discontinuous solutions of deterministic optimal stopping time problems. Modél. Math. Ana. Numér. 21: 557–579 · Zbl 0629.49017
[6] Bhattacharya K. (2003). Microstruture of martensite. Oxford, Oxford University Press
[7] Bonetti E., Colli P., Dreyer W., Gilardi G., Schimpanera G., Sprekels J.(2002). On a model for phase separation in binary alloys driven by mechanical effects. Phys. D 165: 48–65 · Zbl 1008.74066 · doi:10.1016/S0167-2789(02)00373-1
[8] Buratti G., Huo Y., Müller I.(2003). Eshelby tensor as a tensor of free enthalpy. J. Elasticity 72: 31–42 · Zbl 1059.74046 · doi:10.1023/B:ELAS.0000018777.15755.6d
[9] Cahn J.W.(1961). On spinodal decomposition. Acta Metall. 9: 795–801 · doi:10.1016/0001-6160(61)90182-1
[10] Cahn J.W., Elliott C.M., Novick-Cohen A.(1996). The Cahn–Hilliard equation with a concentration dependent mobility: motion by minus the Laplacian of the mean curvature. European J. Appl. Math. 7: 287–301 · Zbl 0861.35039 · doi:10.1017/S0956792500002369
[11] Cahn J.W., Taylor J.E.(1994). Surface motion by surface diffusion. Acta Metall. Mater. 42: 1045–1063 · doi:10.1016/0956-7151(94)90123-6
[12] Carrive M., Miranville A., Piérus A.(2000). The Cahn–Hilliard equation for deformable elastic continua. Adv. Math. Sci. Appl. 10: 539–569 · Zbl 0987.35156
[13] Elliott C.M., Garcke H.(1996). On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math. Anal. 27: 404–423 · Zbl 0856.35071 · doi:10.1137/S0036141094267662
[14] Evans L., Gariepy R.(1992). Measure Theory and Fine Properties of Functions. Boca Raton, CRC Press · Zbl 0804.28001
[15] Fratzl P., Penrose O., Lebowitz J.L.(1999). Modeling of phase separation in alloys with coherent elastic misfit. J. Statist. Phys. 95: 1429–1503 · Zbl 0952.74052 · doi:10.1023/A:1004587425006
[16] Fried E., Gurtin M.E.(1994). Dynamic solid-solid transitions with phase characterized by an order parameter. Phys. D 72: 287–308 · Zbl 0812.35164 · doi:10.1016/0167-2789(94)90234-8
[17] Garcke H.(2003). On Cahn–Hilliard systems with elasticity. Proc. Roy. Soc. Edinburgh Sect. A. 133: 307–331 · Zbl 1130.74037 · doi:10.1017/S0308210500002419
[18] Gurtin M.E., Struthers A.(1990). Multiphase thermomechanics with interfacial structure 3. Evolving phase boundaries in the presence of bulk deformation. Arch. Ration. Mech. Anal. 112: 97–160 · Zbl 0723.73018
[19] Gurtin M.E., Voorhees P.W.(1993). The continuum mechanics of coherent two-phase elastic solids with mass transport. Proc. Roy. Soc. Lond. Ser. A Math. Phy. Eng. Sci. 440: 323–343 · Zbl 0795.73009 · doi:10.1098/rspa.1993.0019
[20] Hornbogen E., Warlimont H.(2001). Metallkunde 4th ed. Berlin, Springer
[21] Ishii H.(1987). Perron’s method for Hamilton–Jacobi equations. Duke Math. J. 55: 369–384 · Zbl 0697.35030 · doi:10.1215/S0012-7094-87-05521-9
[22] James R.(2002). Configurational forces in magnetism with applications to the dynamics of a small scale ferromagnetic shape memory cantilever. Contin. Mech. Thermodyn. 14: 55–86 · Zbl 1100.74549 · doi:10.1007/s001610100072
[23] Kosevich, A.M.: Crystal dislocations and the theory of elasticity. Dislocations in solids, (Ed. F.R.N. Nabarro) 33–141. Amsterdam, North-Holland, 1979
[24] Larché F.C., Cahn J.W.(1982). The effect of self-stress on diffusion in solids. Acta Metall. 30: 1835–1845 · doi:10.1016/0001-6160(82)90023-2
[25] Leo P., Lowengrub J., Jou H. (1998). A diffusive interface model for microstructural evolution in elastically stressed solids. Acta Metall. 46: 2113–2130
[26] Müller L., Glatzel U., Feller-Kniepmeier M. (1992). Modelling thermal misfit stresses in Nickel-base superalloys containing high volume fraction of {\(\gamma\)}–phase. Acta Metall. Mater. 40: 1321 · doi:10.1016/0956-7151(92)90433-F
[27] Müller R., Gross D. (1998). 3D simulation of equilibrium morphologies of precipitates. Computational Materials Science. 11: 35–44 · doi:10.1016/S0927-0256(97)00193-6
[28] Pawlow I., Zajaczkowski M. (2006). Classical solvability of the 1-D Cahn–Hilliard equation coupled with elasticity. Math. Methods Appl. Sci. 29: 853–876 · Zbl 1091.35101 · doi:10.1002/mma.715
[29] Peach M., Köhler J.S. (1950). The forces exerted on dislocations and the stress fields produced by them. Physical Rev. (2) 80: 436–439 · Zbl 0039.23301 · doi:10.1103/PhysRev.80.436
[30] Pego R. (1989). Front migration in the nonlinear Cahn–Hilliard equation. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 422: 261–278 · Zbl 0701.35159 · doi:10.1098/rspa.1989.0027
[31] Rubinstein J., Sternberg P., Keller J.B.(1989). Fast reaction, slow diffusion, and curve shortening. SIAM J. Appl. Math. 49: 116–133 · Zbl 0701.35012 · doi:10.1137/0149007
[32] Schmidt I., Gross D.(1997). The equilibrium shape of an elastically inhomogeneous inclusion. J. Mech. Phys. Solids 45: 1521–1549 · Zbl 0974.74516 · doi:10.1016/S0022-5096(97)00011-2
[33] Socrate S., Parks D.M.(1993). Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater. 41: 2185–2209 · doi:10.1016/0956-7151(93)90389-A
[34] Truskinovsky, L.: Kinks versus shocks. (Eds. Fosdick, R., Dunn, E., Slemrod, M.) Shock induced transitions and phase structures in general media. 185–229, Springer Verlag, 1993
[35] Truskinovsky L.(1994). Transition to detonation in dynamic phase changes. Arch. Ration. Mech. Anal. 125: 375–397 · Zbl 0813.73009 · doi:10.1007/BF00375063
[36] Ziemer W.P. (1989). Weakly differentiable functions Sobolev spaces and functions of bounded variation. Berlin, Springer · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.