×

Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics. (Russian. English translation) Zbl 1446.76146

Mat. Model. 31, No. 12, 3-20 (2019); translation in Math. Models Comput. Simul. 12, No. 4, 536-545 (2020).
Summary: In this study a method is presented for coupled 1D-3D modeling of computational fluid dynamics problems. The method is based on the simultaneous calculation of three-dimensional and one-dimensional areas and the organization of communication between the two parts of the task by transferring boundary conditions. The domain in the three-dimensional approximation is modeled based on the solution of the full Navier-Stokes equations. The calculation of one-dimensional areas is based on the use of basic conservation laws and empirical characteristics of elements. The correctness of the proposed solutions is checked on several problems. For all tasks, the obtained results are compared with available analytical solutions or experimental data.

MSC:

76M60 Symmetry analysis, Lie group and Lie algebra methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations

Software:

LOGOS

References:

[1] C. Fletcher, Computational Techniques for Fluid Dynamics. 1. Fundamental and General Techniques, Springer-Verlag, Berlin, 1991, 494 pp. · Zbl 0717.76001
[2] K. V. Volkov, IU. N. Deriugin, A. S. Kozelkov, V. N. Emelianov, I. V. Teterina, Raznostnye skhemy v zadachakh gazovoi dinamiki na nestrukturirovannykh setkakh, Fizmatlit, M., 2014, 416 pp.
[3] A. S. Kozelkov, D. P. Meleshkina, A. A. Kurkin, N. V. Tarasova, S. V. Lashkin, V. V. Kurulin, “Polnostiu neiavny metod resheniia uravnenii Navie-Stoksa dlia rascheta mnogofaznykh techenii so svobodnoi poverkhnostiu”, Vychislitelnye tekhnologii, 21:5 (2016), 54-76 · Zbl 1465.76003
[4] A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev, A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1506-1516 · Zbl 1445.76003
[5] K. V. Volkov, Iu. N. Deriugin, V. N. Emelianov, A. G. Karpenko, A. S. Kozelkov, I. V. Teterina, Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 536 pp.
[6] A. P. Merenkov, V. Ia. Khasilev, Teoriia gidravlicheskikh tsepei, Nauka, M., 1985, 279 pp. · Zbl 0627.90034
[7] I. E. Idelchik, Spravochnik po gidravlicheskim soprotivleniiam, Mashinostroenie, M., 1992, 672 pp.
[8] L. Formaggia, J. F. Gerbeau, F. Nobile, A. Quarteroni, “On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels”, Comp. Methods Appl. Mech. Engrg., 191 (2001), 561-582 · Zbl 1007.74035
[9] P. Lu, Q. Gao, Y. Wang, “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management”, Applied Thermal Engineering, 104 (2016), 42-53
[10] S. C. Pang, M. A. Kalam, H. H. Masjuki, M. A. Hazrat, “A review on air flow and coolant flow circuit in vehicles” cooling system”, International Journal of Heat and Mass Transfer, 55 (2012), 6295-6306
[11] T. K. Dobroserdova, M. A. Olshanskii, “A finite element solver and energy stable coupling for 3D and 1D fluid models”, Comp. Methods Appl. Mech. Engrg., 259 (2013), 166-176 · Zbl 1286.76082
[12] W. Peng, Z. Yun, Z. Zhengping, Q. Lei, Z. Zhixiang, “A novel multi-fidelity coupled simulation method for flow systems”, Chinese Journal of Aeronautics, 26:4 (2013), 868-875
[13] L. D. Landau, E. M. Lifshitz, Fluid mechanics, Pergamon Press, N.Y., 1987, 533 pp. · Zbl 0655.76001
[14] J. H. Ferziger, M. Peric, Computational Method for Fluid Dynamics, Springer-Verlag, N.Y., 2002, 310 pp. · Zbl 0998.76001
[15] S. V. Lashkin, A. S. Kozelkov, D. P. Meleshkina, A. V. Ialozo, N. V. Tarasova, “Modelirovanie techenii viazkoi neszhimaemoi zhidkosti razdelennym i sovmeshchennym algoritmom tipa SIMPLE”, Matematicheskoe modelirovanie, 28:6 (2016), 64-76 · Zbl 1363.76026
[16] A. S. Kozelkov, “The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations”, Journal of Applied Mechanics and Technical Physics, 58:7 (2017), 1192-1210
[17] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, E. S. Tyatyushkina, V. V. Kurulin, N. V. Tarasova, “Landslide-type tsunami modelling based on the Navier-Stokes Equations”, Science of Tsunami Hazards, 35:3 (2016), 106-144
[18] R. I. Issa, A. D. Gosman, A. P. Watkins, “The Computation of Compressible and Incompressible Recirculating Flows by a Non-iterative Implicit Scheme”, Journal of Computational Physics, 62 (1986), 66-82 · Zbl 0575.76008
[19] A. S. Kozelkov, R. M. Shagaliev, S. M. Dmitriev, A. A. Kurkin, K. N. Volkov, Iu. N. Deriugin, V. N. Emelianov, E. N. Pelinovskii, M. A. Legchanov, Matematicheskie modeli i algoritmy dlia chislennogo modelirovaniia zadach gidrodinamiki i aerodinamiki, uchebnoe posobie, NGTU, N. Novgorod, 2014, 163 pp.
[20] K. N. Volkov, A. S. Kozelkov, S. V. Lashkin, N. V. Tarasova, A. V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Comp. Math. & Math. Phys., 57:12 (2017), 2030-2046 · Zbl 1444.76045
[21] A. V. Ialozo, A. S. Kozelkov, D. Iu. Strelets, A. V. Kornev, I. L. Materova, E. A. Levchenko, I. N. Lapenkov, “Matematicheskoe modelirovanie raboty toplivnoi sistemy samoleta”, Obshcherossiiskii nauchno-tekhnicheskii zhurnal “Polet”, 2018, no. 6, 12-24
[22] A. V. Ialozo, A. S. Kozelkov, V. V. Kurukin, I. L. Materova, A. V. Kornev, D. Iu. Strelets, “Modelirovanie system razvetvlennykh truboprovodov”, Matematicheskoe modelirovanie, 30:10 (2018), 123-138 · Zbl 1441.93201
[23] A. S. Kozelkov, A. A. Kurkin, V. V. Kurulin, M. A. Legchanov, E. S. Tyatyushkina, Y. A. Tsibereva, “Investigation of the application of RANS turbulence models to the calculation of nonisothermal low-Prandtl-number flows”, Fluid Dynamics, 2015, no. 4, 501-513 · Zbl 1325.76102
[24] A. S. Kozelkov, O. L. Krutyakova, A. A. Kurkin, V. V. Kurulin, E. S. Tyatyushkina, “Zonal RANS-LES approach based on an algebraic Reynolds stress model”, Fluid Dynamics, 2015, no. 5, 621-628 · Zbl 1333.76044
[25] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, V. V. Kurulin, E. S. Tyatyushkina, “Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia”, Nat. Hazards Earth Syst. Sci., 17 (2017), 671-683
[26] V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Y. N. Deryuguin, A. S. Kozelkov, D. A. Korchazhkin, V. F. Nikitin, A. V. Sarazov, D. K. Zelenskiy, “Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code”, Acta Astronautica, 96 (2014), 53-64
[27] V. V. Kurulin, A. S. Kozelkov, M. A. Lokshin, D. Iu. Strelets, A. V. Kornev, V. A. Stasenkov, I. L. Sharipova, S. V. Iatsevich, “Chislennoe issledovanie prichin vozniknoveniia kavitatsionnoi erozii v truboprovode slozhnoi geometricheskoi konfiguratsii”, Sbornik dokladov XI Vserossiiskogo siezda po fundamentalnym problemam teoretucheskoi i prikladnoi mekhaniki (20-24 avgusta 2015, g. Kazan), 2015, 2215-2216
[28] A. V. Ialozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, A. V. Kornev, I. N. Lapenkov, E. A. Levchenko, “Razrabotka inzhenernogo programmnogo obespecheniia v interesakh proektirovaniia toplivnoi sistemy samoleta”, Sbornik materialov Pervoi vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Tsifrovye sredstva proizvodstva inzhenernogo analiza” \date 28-30 noiabria 2017 g., Tula, 2017, 171-182
[29] A. V. Ialozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, V. Iu. Gerasimov, I. N. Lapenkov, E. A. Levchenko, “Matematicheskoe modelirovanie raboty toplivnykh system samoletov”, Tezisy dokladov XXI Vserossiiskoi konferentsii i molodezhnoi shkoly-konferentsii “Teoreticheskie osnovy konstruirovaniia chislennykh algoritmov i reshenie zadach matematicheskoi fiziki, posviashchennoi pamiati K. I. Babenko” (5-11 sentiabria 2016 g., Novorossiisk), 2016, 58-59
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.