×

Investigation of the application of RANS turbulence models to the calculation of nonisothermal low-Prandtl-number flows. (English. Russian original) Zbl 1325.76102

Fluid Dyn. 50, No. 4, 501-513 (2015); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2015, No. 4, 44-58 (2015).
Summary: The RANS turbulence models intended for modeling turbulent low-Prandtl-number flows are described. With reference to the example of sodium liquid-metal heat-transportmedium the specialized models presented are compared with the standard RANS models having the highest rating. The adequacy of modeling heat transfer using the specialized models is studied with reference to the example of a heated backward-facing step for which both thermal and dynamic parameters are evaluated.

MSC:

76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76F25 Turbulent transport, mixing
80A20 Heat and mass transfer, heat flow (MSC2010)

Software:

LOGOS
Full Text: DOI

References:

[1] Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A I. Leont’ev, Numerical Modeling of Vortex Intensification of Heat Transfer in Tube Packages [in Russian], Sudostroenie, St. Petersburg (2005).
[2] K. N. Volkov and V. N. Emel’yanov, Flow and Heat Transfer in Rotating Channels and Cavities [in Russian], Fizmatlit, Moscow (2010).
[3] I. A. Belov and S. A. Isaev, Modeling of Turbulent Flows [in Russian], Baltic State Engineering Univ., St. Petersburg (2001).
[4] K. Abe and T. Kondoh, “A New TurbulenceModel for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows. I. Flow Field Calculations,” Int. J. Heat Mass Transfer 37, 139 (1994). · Zbl 0800.76181 · doi:10.1016/0017-9310(94)90168-6
[5] K. Abe and T. Kondoh, “A New TurbulenceModel for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows. II. Thermal Field Calculations,” Int. J. Heat Mass Transfer 38, 1467 (1995). · Zbl 0922.76227 · doi:10.1016/0017-9310(94)00252-Q
[6] T. P. Sommer, R. M. C. So, and Y. G. Lai, “A Near-Wall Two-EquationModel for Turbulent Heat Flux,” Int. J. Heat Mass Transfer 35, 3375 (1992). · Zbl 1256.76016 · doi:10.1016/0017-9310(92)90224-G
[7] S. A. Rogozhkin, S. L. Osipov, I. D. Fadeev, S. F. Shepelev, A. A. Aksenov, S. V. Zhluktov, M. L. Sazonova, and V. V. Shmelev, “Numerical Modeling of Thermal and Hydraulic Processes in the Upper Chamber of a Fast Reactor,” Atomnaya Energiya 115(5), 295 (2013).
[8] C.-H. Lefhalm, N.-I. Tak, H. Piecha, and R. Stieglitz, “Turbulent Heavy Liquid Metal Heat Transfer along a Heated Rod in an Annular Cavity,” J. Nucl. Materials, 280 (2004).
[9] M. S. Youssef, Y. Nagano, and M. Tagawa, “A Two-Equation Heat Transfer Model for Predicting Turbulent Thermal Fields under ArbitraryWall Thermal Conditions,” Int. J. Heat Mass Transfer 35, 3095 (1992). · Zbl 0763.76038 · doi:10.1016/0017-9310(92)90329-Q
[10] A.Yu. Snegirev, High-Performance Computations in Engineering Physics. Numerical Modeling of Turbulent Flows [in Russian], Polytechnical Institute, St. Petersburg (2009).
[11] A. S. Kozelkov, V. V. Kurulin, E. S. Tyatyushkina, O. L. Puchkova, and S. V. Lashkin, “Investigation of Convective Flow Discretization Schemes in DES Simulation of Incompressible Viscous Turbulent Flows,” Fundam. Issl. No. 10, 1051 (2013). · Zbl 1324.76026
[12] Bardina, J. E.; Huang, P. G.; Coackley, T. G., “Turbulence Modeling Validation, Testing, and Development,” (1997)
[13] F. S. Lien, W. L. Chen, and M. A. Leischnizer, “Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non- Linear Stress-Strain/Vorticity Relations,” in: Proc. 3rd Symp. Engineering Turbulence Modelling and Measurements, Crete, Greece. 1996 (1996), p. 169.
[14] A. S. Kozelkov, V. V. Kurulin, O. L. Puchkova, and E. S. Tyatyushkina, “Modeling of Incompressible Viscous Turbulent Flows on Unstructured Grids Using the DES Model,” Mat. Model. 26(8), 81. · Zbl 1324.76026
[15] A. S. Kozelkov, Yu. N. Deryugin, S. V. Lashkin, D. P. Silaev, P. G. Simonov, and E. S. Tyatyushkina, “Realization of the Method for Calculating Viscous Incompressible Fluid Flow Using the Multigrid Techniques Based on the SIMPLE Algorithmin the LOGOS Software Package,” VANT. Ser. Mathematical Modeling of Physical Processes No. 4 (2013), p. 44.
[16] J. C. Vogel and J. K. Eaton, “Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward- Facing Step,” J. Heat Transfer 107, 922 (1985). · doi:10.1115/1.3247522
[17] V. P. Isachenko, V. A. Osipova, and A. S. Sukomel, Heat Transfer [in Russian], Energoizdat, Moscow (1981).
[18] S. A. Rogozhkin, A. A. Aksenov, S. V. Zhluktov, S. L. Osipov, M. L. Sazonova, I. D. Fadeev, S. F. Shepelev, and V. V. Shmelev, “Development of a Model of Turbulent Heat Transfer for a Liquid-Metal Sodium Heat-Transport Medium and its Verification,” Vych. Mekh. Sploshnykh Sred, 7, 306 (2014).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.