×

Zero Mach number limit of the compressible primitive equations: well-prepared initial data. (English) Zbl 1446.35133

Summary: This work concerns the zero Mach number limit of the compressible primitive equations. The primitive equations with the incompressibility condition are identified as the limiting equations. The convergence with well-prepared initial data (i.e., initial data without acoustic oscillations) is rigorously justified, and the convergence rate is shown to be of order \(\mathcal{O}(\varepsilon)\), as \(\varepsilon \rightarrow 0^+\), where \(\varepsilon\) represents the Mach number. As a byproduct, we construct a class of global solutions to the compressible primitive equations, which are close to the incompressible flows.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35L45 Initial value problems for first-order hyperbolic systems
35Q86 PDEs in connection with geophysics
86A05 Hydrology, hydrography, oceanography
76N06 Compressible Navier-Stokes equations

References:

[1] Alazard, T., Low Mach number flows and combustion, SIAM J. Math. Anal., 38, 4, 1186-1213 (2006) · Zbl 1121.35092 · doi:10.1137/050644100
[2] Alazard, T., Low Mach number limit of the full Navier-Stokes equations, Arch. Ration. Mech. Anal., 180, 1, 1-73 (2006) · Zbl 1108.76061 · doi:10.1007/s00205-005-0393-2
[3] Azérad, P.; Guillén, F., Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., 33, 4, 847-859 (2001) · Zbl 0999.35072 · doi:10.1137/S0036141000375962
[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Vol. 343. Springer Science & Business Media, 2011. 10.1007/978-3-642-16830-7 · Zbl 1227.35004
[5] Brenier, Y., Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12, 3, 495-512 (1999) · Zbl 0984.35131 · doi:10.1088/0951-7715/12/3/004
[6] Cao, C.; Ibrahim, S.; Nakanishi, K.; Titi, ES, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics, Commun. Math. Phys., 337, 2, 473-482 (2015) · Zbl 1317.35262 · doi:10.1007/s00220-015-2365-1
[7] Cao, C.; Li, J.; Titi, ES, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity, J. Differ. Equ., 257, 11, 4108-4132 (2014) · Zbl 1300.35089 · doi:10.1016/j.jde.2014.08.003
[8] Cao, C.; Li, J.; Titi, ES, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal., 214, 1, 35-76 (2014) · Zbl 1305.35113 · doi:10.1007/s00205-014-0752-y
[9] Cao, C.; Li, J.; Titi, ES, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Commun. Pure Appl. Math., 69, 8, 1492-1531 (2016) · Zbl 1351.35125 · doi:10.1002/cpa.21576
[10] Cao, C.; Li, J.; Titi, ES, Strong solutions to the 3D primitive equations with only horizontal dissipation: near \(H^1\) initial data, J. Funct. Anal., 272, 11, 4606-4641 (2017) · Zbl 1366.35123 · doi:10.1016/j.jfa.2017.01.018
[11] Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3D primitive equations with horizontal viscosity and vertical diffusivity. arXiv:1703.02512, 2017
[12] Cao, C.; Titi, ES, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., 166, 1, 245-267 (2007) · Zbl 1151.35074 · doi:10.4007/annals.2007.166.245
[13] Cao, C.; Titi, ES, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion, Commun. Math. Phys., 310, 2, 537-568 (2012) · Zbl 1267.35157 · doi:10.1007/s00220-011-1409-4
[14] Chemin, J.-Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical geophysics: an introduction to rotating fluids and the Navier-Stokes equations. Vol. 32. Oxford University Press on Demand, 2006 · Zbl 1205.86001
[15] Zelati, MC; Huang, A.; Kukavica, I.; Temam, R.; Ziane, M., The primitive equations of the atmosphere in presence of vapour saturation, Nonlinearity, 28, 3, 625-668 (2015) · Zbl 1308.35233 · doi:10.1088/0951-7715/28/3/625
[16] Danchin, R., Zero Mach number limit for compressible flows with periodic boundary conditions, Am. J. Math., 124, 6, 1153-1219 (2002) · Zbl 1048.35075 · doi:10.1353/ajm.2002.0036
[17] Danchin, R., Zero Mach number limit in critical spaces for compressible Navier-Stokes equations, Ann. Scient. Éc. Norm. Sup., 35, 1, 27-75 (2002) · Zbl 1048.35054 · doi:10.1016/S0012-9593(01)01085-0
[18] Danchin, R., Low Mach number limit for viscous compressible flows, ESAIM Math. Model. Numer. Anal., 39, 3, 459-475 (2005) · Zbl 1080.35067 · doi:10.1051/m2an:2005019
[19] Danchin, R.; He, L., The Oberbeck-Boussinesq approximation in critical spaces, Asymptot. Anal., 84, 1-2, 61-102 (2013) · Zbl 1294.35093 · doi:10.3233/ASY-131170
[20] Desjardins, B., Grenier, E.: Low Mach number limit of viscous compressible flows in the whole space. Proc. R. Soc. A Math. Phys. Eng. Sci. 455(1986), 2271-2279, 1999. 10.1098/rspa.1999.0403 · Zbl 0934.76080
[21] Ersoy, M., Ngom, T.: Existence of a global weak solution to compressible primitive equations. C. R. Acad. Sci. Paris Ser. I350(7-8), 379-382, 2012. 10.1016/j.crma.2012.04.013 · Zbl 1253.35119
[22] Ersoy, M.; Ngom, T.; Sy, M., Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity, 24, 1, 79-96 (2011) · Zbl 1372.76032 · doi:10.1088/0951-7715/24/1/004
[23] Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford Lecture Series in Mathematics and its Applications, 26. Oxford University Press, 2004 · Zbl 1080.76001
[24] Feireisl, E., Flows of viscous compressible fluids under strong stratification: incompressible limits for long-range potential forces, Math. Model. Methods Appl. Sci., 21, 1, 7-27 (2011) · Zbl 1213.35339 · doi:10.1142/S0218202511004964
[25] Feireisl, E.; Klein, R.; Novotný, A.; Zatorska, E., On singular limits arising in the scale analysis of stratified fluid flows, Math. Model. Methods Appl. Sci., 26, 3, 419-443 (2016) · Zbl 1339.35210 · doi:10.1142/S021820251650007X
[26] Feireisl, E.; Málek, J.; Novotný, A.; Straškraba, I., Anelastic approximation as a singular limit of the compressible Navier-Stokes system, Commun. Partial Differ. Equ., 33, 1, 157-176 (2008) · Zbl 1146.35073 · doi:10.1080/03605300601088799
[27] Feireisl, E.; Novotný, A., Singular Limits in Thermodynamics of Viscous Fluids (2017), Cham: Advances in Mathematical Fluid Mechanics. Springer International Publishing, Cham · Zbl 1432.76002
[28] Feireisl, E., Schonbek, M.E.: On the Oberbeck-Boussinesq approximation on unbounded domains. In Nonlinear Partial Differ. Equations, pp. 131-168. Springer, Berlin, 2012. 10.1007/978-3-642-25361-4_7 · Zbl 1252.35227
[29] Gallagher, I., Applications of Schochet’s methods to parabolic equations, J. Math. Pures Appl., 77, 10, 989-1054 (1998) · Zbl 1101.35330 · doi:10.1016/S0021-7824(99)80002-6
[30] Gatapov, BV; Kazhikhov, AV, Existence of a global solution to one model problem of atmosphere dynamics, Sib. Math. J., 46, 5, 805-812 (2005) · Zbl 1119.35067 · doi:10.1007/s11202-005-0079-x
[31] Gerard-Varet, D.; Masmoudi, N.; Vicol, V., Well-posedness of the hydrostatic Navier-Stokes equations, J. Math. Fluid Mech., 14, 2, 355-361 (2018) · Zbl 1294.35111
[32] Ginibre, J.; Velo, G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal., 133, 1, 50-68 (1995) · Zbl 0849.35064 · doi:10.1006/jfan.1995.1119
[33] Guillén-González, FM; Masmoudi, N.; Rodríguez-Bellido, MÁ, Anisotropic estimates and strong solutions of the primitive equations, Differ. Integral Equ., 14, 11, 1381-1408 (2001) · Zbl 1161.76454
[34] Hittmeir, S.; Klein, R.; Li, J.; Titi, ES, Global well-posedness for passively transported nonlinear moisture dynamics with phase changes, Nonlinearity, 30, 3676-3718 (2017) · Zbl 1379.35325 · doi:10.1088/1361-6544/aa82f1
[35] Hoff, D., The zero-mach limit of compressible flows, Commun. Math. Phys., 192, 543-554 (1998) · Zbl 0907.35098 · doi:10.1007/s002200050308
[36] Changbing, H.; Temam, R.; Ziane, M., The primitive equations on the large scale ocean under the small depth hypothesis, Discret. Contin. Dyn. Syst., 9, 1, 97-131 (2002) · Zbl 1048.35082 · doi:10.3934/dcds.2003.9.97
[37] Keel, M.; Tao, T., Endpoint Strichartz estimates, Am. J. Math., 120, 5, 955-980 (1998) · Zbl 0922.35028 · doi:10.1353/ajm.1998.0039
[38] Klainerman, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34, 4, 481-524 (1981) · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[39] Klainerman, S.; Majda, A., Compressible and incompressible fluids, Commun. Pure Appl. Math., 35, 5, 629-651 (1982) · Zbl 0478.76091 · doi:10.1002/cpa.3160350503
[40] Kukavica, I.; Temam, R.; Vicol, VC; Ziane, M., Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, J. Differ. Equ., 250, 3, 1719-1746 (2011) · Zbl 1204.35129 · doi:10.1016/j.jde.2010.07.032
[41] Li, J.; Titi, ES, The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: Rigorous justification of the hydrostatic approximation, J. Math. Pures Appl. (2018) · Zbl 1412.35224 · doi:10.1016/j.matpur.2018.04.006
[42] Lindblad, H.; Sogge, CD, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., 130, 2, 357-426 (1995) · Zbl 0846.35085 · doi:10.1006/jfan.1995.1075
[43] Lions, J-L; Temam, R.; Wang, S., Geostrophic asymptotics of the primitive equations of the atmosphere, Topol. Methods Nonlinear Anal., 4, 253-287 (1994) · Zbl 0846.35106 · doi:10.12775/TMNA.1994.030
[44] Lions, J-L; Temam, R.; Wang, S., On the equations of the large-scale ocean, Nonlinearity, 5, 5, 1007-1053 (1992) · Zbl 0766.35039 · doi:10.1088/0951-7715/5/5/002
[45] Lions, J-L; Temam, R.; Wang, S., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5, 2, 237-288 (1992) · Zbl 0746.76019 · doi:10.1088/0951-7715/5/2/001
[46] Lions, P-L; Masmoudi, N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl., 77, 6, 585-627 (1998) · Zbl 0909.35101 · doi:10.1016/S0021-7824(98)80139-6
[47] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Volume 1. Incompressible Models. Oxford Lecture Series in Mathematics and Its Applications, 3. Oxford University Press, 1996. · Zbl 0866.76002
[48] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Volume 2. Compressible Models. Oxford Lecture Series in Mathematics and Its Applications, Vol 2, No 10. Oxford University Press, 1998. · Zbl 0908.76004
[49] Liu, X.; Titi, ES, Global existence of weak solutions to compressible primitive equations with degenerate viscosities, SIAM J. Math. Anal., 51, 3, 1913-1964 (2019) · Zbl 1419.35150 · doi:10.1137/18M1211994
[50] Liu, X., Titi, E.S.: Local well-posedness of strong solutions to the three-dimensional compressible primitive equations. Available at arXiv:1806.09868, 2018.
[51] Liu, X., Titi, E.S.: Zero Mach number limit of the compressible primitive equations Part II: Ill-prepared initial data. In preperation.
[52] Masmoudi, N., Incompressible, inviscid limit of the compressible Navier-Stokes system, Ann. Inst. Henri Poincaré Anal. Nonlinéaire, 18, 2, 199-224 (2001) · Zbl 0991.35058 · doi:10.1016/S0294-1449(00)00123-2
[53] Masmoudi, N.; Wong, TK, On the \(H^s\) theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., 204, 1, 231-271 (2012) · Zbl 1317.76017 · doi:10.1007/s00205-011-0485-0
[54] Novotný, A., Straskraba, I.: Introduction to the mathematical theory of compressible flow. Vol. 27. Oxford University Press on Demand, 2004 · Zbl 1088.35051
[55] Novotný, A., R \(\mathring{{\rm u}}\) žička, M., Thäter, G.: Rigorous derivation of the anelastic approximation to the Oberbeck-Boussinesq equations. Asymptot. Anal.75, 93-123, 2011. 10.3233/ASY-2011-1056 · Zbl 1306.35097
[56] Petcu, M.; Wirosoetisno, D., Sobolev and Gevrey regularity results for the primitive equations in three space dimensions, Appl. Anal., 84, 8, 769-788 (2005) · Zbl 1078.35029 · doi:10.1080/00036810500130745
[57] Rajagopal, KR; Ruzicka, M.; Srinivasa, AR, On the Oberbeck-Boussinesq approximation, Math. Model. Methods Appl. Sci., 06, 8, 1157-1167 (1996) · Zbl 0883.76078 · doi:10.1142/S0218202596000481
[58] Renardy, M., Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 194, 3, 877-886 (2009) · Zbl 1292.76011 · doi:10.1007/s00205-008-0207-4
[59] Lewis, F., Richardson (2007), Weather Prediction by Numerical Process: Cambridge University Press, Weather Prediction by Numerical Process · JFM 48.0629.07
[60] Schochet, S., Fast singular limits of hyperbolic PDEs, J. Differ. Equ., 114, 2, 476-512 (1994) · Zbl 0838.35071 · doi:10.1006/jdeq.1994.1157
[61] Schochet, S., The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit, Commun. Math. Phys., 104, 1, 49-75 (1986) · Zbl 0612.76082 · doi:10.1007/BF01210792
[62] Schochet, S., Asymptotics for symmetric hyperbolic systems with a large parameter, J. Differ. Equ., 75, 1, 1-27 (1988) · Zbl 0685.35014 · doi:10.1016/0022-0396(88)90126-X
[63] Tang, T.; Gao, H., On the stability of weak solution for compressible primitive equations, Acta Appl. Math., 140, 1, 133-145 (2015) · Zbl 1333.35214 · doi:10.1007/s10440-014-9982-0
[64] Ukai, S., The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ., 26, 2, 323-331 (1986) · Zbl 0618.76074 · doi:10.1215/kjm/1250520925
[65] Wang, F.; Dou, C.; Jiu, Q., Global weak solutions to 3D compressible primitive equations with density-dependent viscosity, J. Math. Phys., 61, 021507 (2020) · Zbl 1434.35066 · doi:10.1063/1.5120088
[66] Warren, M., Washington and Claire L (2005), Parkinson. An Introduction to Three-Dimensional Climate Modeling: University Science Books, Parkinson. An Introduction to Three-Dimensional Climate Modeling
[67] Wong, TK, Blowup of solutions of the hydrostatic Euler equations, Proc. Am. Math. Soc., 143, 3, 1119-1125 (2014) · Zbl 1311.35200 · doi:10.1090/S0002-9939-2014-12243-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.