×

Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. (English) Zbl 1204.35129

Summary: We address the question of well-posedness in spaces of analytic functions for the Cauchy problem for the hydrostatic incompressible Euler equations (inviscid primitive equations) on domains with boundary. By a suitable extension of the Cauchy-Kowalewski theorem we construct a locally in time, unique, real-analytic solution and give an explicit rate of decay of the radius of real-analyticity.

MSC:

35Q31 Euler equations
35A10 Cauchy-Kovalevskaya theorems
76B03 Existence, uniqueness, and regularity theory for incompressible inviscid fluids
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Asano, K., A note on the abstract Cauchy-Kowalewski theorem, Proc. Japan Acad. Ser. A, 64, 102-105 (1988) · Zbl 0666.35003
[2] Bardos, C.; Benachour, S., Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de \(R^n\), Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 4, 647-687 (1977) · Zbl 0366.35022
[3] Brenier, Y., Homogeneous hydrostatic flows with convex velocity profiles, Nonlinearity, 12, 495-512 (1999) · Zbl 0984.35131
[4] Brenier, Y., Remarks on the derivation of the hydrostatic Euler equations, Bull. Sci. Math., 127, 585-595 (2003) · Zbl 1040.35068
[5] Grenier, E., On the derivation of homogeneous hydrostatic equations, M2AN Math. Model. Numer. Anal., 33, 5, 965-970 (1999) · Zbl 0947.76013
[6] Grenier, E., On the nonlinear instability of Euler and Prandtl equations, Comm. Pure Appl. Math., 53, 9, 1067-1091 (2000) · Zbl 1048.35081
[7] Hadamard, J., Lectures on Cauchy’s Problem in Linear Partial Differential Equations (1953), Dover Publications: Dover Publications New York · JFM 49.0725.04
[8] Kukavica, I.; Temam, R.; Vicol, V.; Ziane, M., Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain, C. R. Acad. Sci. Paris Ser. I, 348, 639-645 (2010) · Zbl 1194.35247
[9] Kukavica, I.; Vicol, V., On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Amer. Math. Soc., 137, 669-677 (2009) · Zbl 1156.76010
[10] I. Kukavica, V. Vicol, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst., in press.; I. Kukavica, V. Vicol, The domain of analyticity of solutions to the three-dimensional Euler equations in a half space, Discrete Contin. Dyn. Syst., in press. · Zbl 1308.35192
[11] Lions, P.-L., Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3 (1996), Oxford University Press: Oxford University Press New York · Zbl 0866.76002
[12] Lions, J.-L.; Magenes, E., Problèmes aux limites non homogènes et applications, vol. 3 (1968), S.A. Dunod: S.A. Dunod Paris · Zbl 0165.10801
[13] Lions, J.-L.; Temam, R.; Wang, S., New formulations of the primitive equations of atmosphere and applications, Nonlinearity, 5, 2, 237-288 (1992) · Zbl 0746.76019
[14] Lions, J.-L.; Temam, R.; Wang, S., On the equations of the large-scale ocean, Nonlinearity, 5, 5, 1007-1053 (1992) · Zbl 0766.35039
[15] Lions, J.-L.; Temam, R.; Wang, S., Models of the coupled atmosphere and ocean (CAO I), and Numerical Analysis of the coupled models of atmosphere and Ocean (CAO II), (Oden, J. T., Comput. Mech. Adv., vol. 1 (1993)), 1-54, and 55-119 · Zbl 0805.76011
[16] Levermore, C. D.; Oliver, M., Analyticity of solutions for a generalized Euler equation, J. Differential Equations, 133, 2, 321-339 (1997) · Zbl 0876.35090
[17] Lombardo, M. C.; Cannone, M.; Sammartino, M., Well-posedness of the boundary layer equations, SIAM J. Math. Anal., 35, 4, 987-1004 (2003) · Zbl 1053.76013
[18] Masuda, K., On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation, Proc. Japan Acad., 43, 827-832 (1967) · Zbl 0204.26901
[19] Pedlosky, J., Geophysical Fluid Dynamics (1987), Springer-Verlag: Springer-Verlag New York · Zbl 0713.76005
[20] Renardy, M., Ill-posedness of the hydrostatic Euler and Navier-Stokes equations, Arch. Ration. Mech. Anal., 194, 877-886 (2009) · Zbl 1292.76011
[21] Rousseau, A.; Temam, R.; Tribbia, J., Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity, Discrete Contin. Dyn. Syst. Ser. A, 13, 5, 1257-1276 (2005) · Zbl 1092.35089
[22] Rousseau, A.; Temam, R.; Tribbia, J., The 3D primitive equations in the absence of viscosity: Boundary conditions and well-posedness in the linearized case, J. Math. Pures Appl., 89, 297-319 (2008) · Zbl 1137.35057
[23] Oliger, J.; Sundström, A., Theoretical and practical aspects of some initial boundary value problems in fluid dynamics, SIAM J. Appl. Math., 35, 3, 419-446 (1978) · Zbl 0397.35067
[24] Sammartino, M.; Caflisch, R. E., Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space I. Existence for Euler and Prandtl equations, Comm. Math. Phys., 192, 433-461 (1998) · Zbl 0913.35102
[25] Temam, R., On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20, 1, 32-43 (1975) · Zbl 0309.35061
[26] Temam, R.; Tribbia, J., Open boundary conditions for the primitive and Boussinesq equations, J. Atmospheric Sci., 60, 21, 2647-2660 (2003)
[27] Temam, R.; Ziane, M., Some mathematical problems in geophysical fluid dynamics, (Handbook of Mathematical Fluid Dynamics, vol. III (2004), North-Holland: North-Holland Amsterdam), 535-657 · Zbl 1222.35145
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.