×

An interval-based approach to model input uncertainty in M/M/1 simulation. (English) Zbl 1445.68038

Summary: This paper presents an interval-based discrete-event simulation (IBS) mechanism to help improve the robustness of simulations that incorporate input uncertainty. This proposed simulation mechanism is based on imprecise probability and models the parameter and model-form uncertainty without the need of sensitivity analysis in traditional simulation practice. The imprecise probabilistic measure given in an interval form is used as the input of simulation in our proposed IBS mechanism, where the statistical distribution parameters have interval values. A parameterization technique for interval probability distributions is proposed in this paper. An interval random variate generation method is used to run the simulation. Uncertainty propagation is achieved by applying Kaucher interval arithmetic. The proposed mechanism is illustrated with an M/M/1 queueing system.

MSC:

68M20 Performance evaluation, queueing, and scheduling in the context of computer systems
60K25 Queueing theory (aspects of probability theory)

Software:

UMDES
Full Text: DOI

References:

[1] Allen, J. F., Maintaining knowledge about temporal intervals, Commun. ACM, 26, 11, 832-843, (Nov. 1983) · Zbl 0519.68079
[2] Andradóttir, S.; Bier, V. M., Applying Bayesian ideas in simulation, Simul. Pract. Theory, 8, 3-4, 253-280, (2000) · Zbl 1003.68650
[3] Alvarez, D. A., On the calculation of the bounds of probability of events using infinite random sets, Int. J. Approx. Reason., 43, 3, 241-267, (2006) · Zbl 1109.68113
[4] Alvarez, D. A., A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type, Fuzzy Sets Syst., 160, 3, 384-401, (2009) · Zbl 1178.60009
[5] Bahar, B.; Gunes, C., Capturing parameter uncertainty in simulations with correlated inputs, (Johansson, B.; Jain, S.; Montoya-Torres, J.; Hugan, J.; Yücesan, E., Proceedings of the 2010 Winter Simulation Conference, (2010)), 1167-1177
[6] Barton, R. R.; Schruben, L. W., Uniform and bootstrap resampling of empirical distributions, (Evans, G. W.; Mollaghasemi, M.; Biles, W. E.; Russell, E. C., Proceedings of the 1993 Winter Simulation Conference, (1993)), 503-508
[7] Barton, R. R.; Schruben, L. W., Resampling methods for input modeling, (Peters, B. A.; Smith, J. S.; Medeiros, D. J.; Rohrer, M. W., Proceedings of the 2001 Winter Simulation Conference, (2001)), 372-378
[8] Barton, Russell R.; Nelson, Barry L.; Xie, Wei, A framework for input uncertainty analysis, (Johansson, B.; Jain, S.; Montoya-Torres, J.; Hugan, J.; Yücesan, E., Proceedings of the 2010 Winter Simulation Conference, (2010)), 1189-1198
[9] Batarseh, O. G.; Wang, Y., Reliable simulation with input uncertainties using an interval-based approach, (Proceedings of Conference on Winter Simulation, (2008)), 344-352
[10] Batarseh, O. G., Interval-based approach to model input uncertainties in discrete event simulation, (2010), University of Central Florida Orlando, Florida, United States, Published Doctoral Dissertation
[11] Batarseh, O. G.; Nazzal, D.; Wang, Y., An interval-based metamodeling approach to simulate material handling in semiconductor wafer fabs, IEEE Trans. Semicond. Manuf., 23, 4, 527-537, (2010)
[12] Batarseh, O.; Singham, D. I., Interval-based simulation to model input uncertainty in stochastic lanchester models, Mil. Oper. Res., 18, 1, 61-76, (2013)
[13] Cassandras, C. G.; Lafortune, S., Introduction to discrete event systems, (2006), Springer-Verlag New York, Inc. Secaucus, NJ
[14] Cheng, R. C.H., Selecting input models, (Tew, J. D.; Manivannan, S.; Sadowski, D. A.; Seila, A. F., Proceedings of the 1994 Conference on Winter Simulation, (1994)), 184-191
[15] Cheng, R. C.H.; Holland, W., Sensitivity of computer simulation experiments to errors in input data, J. Stat. Comput. Simul., 57, 219-241, (1997) · Zbl 0937.62131
[16] Cheng, R. C.H.; Holland, W., Two-point methods for assessing variability in simulation output, J. Stat. Comput. Simul., 60, 183-205, (1998) · Zbl 1043.62505
[17] Cheng, R. C.H.; Holland, W., Calculation of confidence intervals for simulation output, ACM Trans. Model. Comput. Simul., 14, 4, 344-362, (2004) · Zbl 1478.62068
[18] Chick, S. E., Bayesian analysis for simulation input and output, (Andradóttir, S.; Healy, K. J.; Withers, D. H.; Nelson, B. L., Proceedings of the 1997 Winter Simulation Conference, (1997)), 253-260
[19] Chick, S. E., Steps to implement Bayesian input distribution selection, (Farrington, P. A.; Nembhard, H. B.; Sturrock, D. T.; Evans, G. W., Proceedings of the 1999 Winter Simulation Conference, (1999)), 317-324
[20] Chick, S. E., Bayesian methods for simulation, (loines, J. A.; Barton, R. R.; Kang, K.; Fishwick, P. A., Proceedings of the 2000 Winter Simulation Conference, (2000)), 109-118
[21] Chick, S. E., Input distribution selection for simulation experiments: accounting for input uncertainty, Oper. Res., 49, 744-758, (2001)
[22] Chick, S. E., Bayesian methods for discrete event simulation, (Ingalls, R. G.; Rossetti, M. D.; Smith, J. S.; Peters, B. A., Proceedings of the 2004 Conference on Winter Simulation, (2004)), 89-100
[23] Couso, I.; Moral, S.; Walley, P., A survey of concepts of independence for imprecise probabilities, Risk Decis. Policy, 5, 2, 165-181, (2000)
[24] De Campos, L. M.; Moral, S., Independence concepts for convex sets of probabilities, (Proceedings of 11th Conference on Uncertainty in Artificial Intelligence, (1995)), 108-115
[25] de Finetti, B., Theory of probability, vol. 2, (1990), John Wiley & Sons, Inc. New York · Zbl 0694.60001
[26] Deleris, L. A.; Erhun, F., Risk management in supply networks using Monte-Carlo simulation, (Kuhl, M. E.; Steiger, N. M.; Armstrong, F. B.; Joines, J. A., Proceedings of the 2005 Winter Simulation Conference, (2005)), 1643-1649
[27] Draper, D., Assessment and propagation of model uncertainty (with discussion), J. R. Stat. Soc. B, 57, 1, 45-97, (1995) · Zbl 0812.62001
[28] Elkins, D.; LaFleur, C.; Foster, E.; Tew, J.; Biller, B.; Wilson, J. R., Clinic: correlated inputs in an automotive paint shop fire risk simulation, (Henderson, S. G.; Biller, B.; Hsieh, M.-H.; Shortle, J.; Tew, J. D.; Barton, R. R., Proceedings of the 2007 Winter Simulation Conference, (2007)), 250-259
[29] Ferson, S.; Kreinovich, V.; Ginzburg, L.; Myers, D. S.; Sentz, K., Constructing probability boxes and Dempster-Shafer structures, (2002), Sandia National Laboratories Technical Report SAND2002-4015, Albuquerque, NM
[30] Ferson, S.; Kreinovich, V.; Hajagos, J.; Oberkampf, W.; Ginzburg, L., Experimental uncertainty estimation and statistics for data having interval uncertainty, (2007), Sandia National Laboratories SAND, 2007-0939
[31] Galdino, S., Interval continuous-time Markov chains simulation, (Proceedings of 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), Taipei, Taiwan, Dec. 6-8, (2013)), 273-278
[32] Gardenes, E.; Sainz, M. A.; Jorba, L.; Calm, R.; Estela, R.; Mielgo, H.; Trepat, A., Modal intervals, Reliab. Comput., 7, 2, 77-111, (2001) · Zbl 0982.65060
[33] Glynn, P., Problems in Bayesian analysis of stochastic simulation, (Wilson, J. R.; Henriksen, J. O.; Roberts, S. D., Proceedings of the 1986 Winter Simulation Conference, (1986)), 376-383
[34] Hinkkanen, A.; Lang, K. R.; Whinston, A. B., A theoretical foundation of qualitative reasoning based on set theory, (1993), Center for Numerical Analysis, The Univ. of Texas at Austin Austin, TX, Tech. Rep.
[35] Henderson, S., Input model uncertainty: why do we care and what should we do about it?, (Chick, S.; Sanchez, P. J.; Ferrin, D.; Morrice, D. J., Proceedings of the 2003 Winter Simulation Conference, (2003)), 90-100
[36] Ingalls, R. G.; Morrice, D. J.; Whinston, A. B., The implementation of temporal intervals in qualitative simulation graphs, ACM Trans. Model. Comput. Simul., 10, 215-240, (2000)
[37] Karanki, D. R.; Kushwaha, H. S.; Verma, A. K.; Ajit, S., Uncertainty analysis based on probability bounds (p-box) approach in probabilistic safety assessment, Risk Anal., 29, 5, 662-675, (2009)
[38] Kaucher, E., Interval analysis in the extended interval space IR, Computing, Suppl., 2, 33-49, (1980) · Zbl 0419.65031
[39] Lan, H.; Nelson, B. L.; Staum, J., A confidence interval for tail conditional expectation via two-level simulation, (Henderson, S. G.; Biller, B.; Hsieh, M.-H.; Shortle, J.; Tew, J. D.; Barton, R. R., Proceedings of the 2007 Winter Simulation Conference, (2007)), 949-957
[40] Lopatatzidis, S.; De Bock, J.; De Cooman, G.; De Vuyst, S.; Walraevens, J., Robust queueing theory: an initial study using imprecise probabilities, Queueing Syst., 82, 1-2, 75-101, (2016) · Zbl 1334.60199
[41] Lucas, T. W.; Sanchez, S. M.; Martinez, F.; Sickinger, L. R.; Roginski, J. W., Defense and homeland security applications of multi-agent simulations, (Henderson, S. G.; Biller, B.; Hsieh, M.-H.; Shortle, J.; Tew, J. D.; Barton, R. R., Proceedings of the 2007 Winter Simulation Conference, (2007)), 138-149
[42] Miranda, E., A survey of the theory of coherent lower previsions, Int. J. Approx. Reason., 48, 2, 628-658, (2008) · Zbl 1184.68519
[43] Moore, R. E., Interval analysis, (1966), Prentice-Hall Englewood Cliffs, NJ · Zbl 0176.13301
[44] Ng, S. H.; Chick, S. E., Reducing parameter uncertainty for stochastic systems, ACM Trans. Model. Comput. Simul., 16, 1, 26-51, (2006) · Zbl 1458.62030
[45] Oberguggenberger, M.; Fellin, W., Reliability bounds through random sets: non-parametric methods and geotechnical applications, Comput. Struct., 86, 10, 1093-1101, (2008)
[46] Rottondi, C.; Erreygers, A.; Verticale, G.; De Bock, J., Modelling spectrum assignment in a two-service flexi-grid optical link with imprecise continuous-time Markov chains, (13th International Conference on Design of Reliable Communication Networks, DRCN 2017, (2017))
[47] Stuart, A.; Ord, J. K., Kendall’s advanced theory of statistics, vol. 1, (1987), Oxford University Press New York · Zbl 0621.62001
[48] Tucker, W. T.; Ferson, S., Probability bounds analysis in environmental risk assessments, (2003), Applied Biomathematics, Setauket, NY. Available at
[49] Vose, D., Risk analysis, A quantitative guide, (2000), John Wiley & Sons New York
[50] Walley, P., Statistical reasoning with imprecise probabilities, (1991), Chapman & Hall London · Zbl 0732.62004
[51] Wang, Y., Imprecise probabilities based on generalized intervals for system reliability assessment, Int. J. Reliab. Saf., 4, 4, 319-342, (2010)
[52] Wang, Y., Independence in generalized interval probability, (Vulnerability, Uncertainty, and Risk: Analysis, Modeling, and Management, (2011)), 37-44
[53] Wang, Y., Reliable kinetic Monte Carlo simulation based on random set sampling, Soft Comput., 17, 8, 1439-1451, (2013) · Zbl 1327.65008
[54] Wang, Y., Generalized Fokker-Planck equation with generalized interval probability, Mech. Syst. Signal Process., 37, 1-2, 92-104, (2013)
[55] Zhang, H.; Mullen, R. L.; Muhanna, R. L., Interval Monte Carlo methods for structural reliability, Struct. Saf., 32, 3, 183-190, (2010)
[56] Zhang, H.; Dai, H.; Beer, M.; Wang, W., Structural reliability analysis on the basis of small samples: an interval quasi-Monte Carlo method, Mech. Syst. Signal Process., 37, 1, 137-151, (2013)
[57] Zimmermann, H. J., An application-oriented view of modeling uncertainty, Eur. J. Oper. Res., 122, 190-198, (2000) · Zbl 0955.91029
[58] Zouaoui, F.; Wilson, J. R., Accounting for input model and parameter uncertainty in simulation, (Peters, B. A.; Smith, J. S.; Medeiros, D. J.; Rohrer, M. W., Proceedings of the 2001 Winter Simulation Conference, (2001))
[59] Zouaoui, F.; Wilson, J. R., Accounting for parameter uncertainty in simulation input modeling, (Peters, B. A.; Smith, J. S.; Medeiros, D. J.; Rohrer, M. W., Proceedings of the 2001 Winter Simulation Conference, (2001))
[60] Zouaoui, F.; Wilson, J. R., Accounting for parameter uncertainty in simulation input modeling, AIIE Trans., 35, 781-792, (2003)
[61] Zouaoui, F.; Wilson, J. R., Accounting for input-model and input-parameter uncertainties in simulation, AIIE Trans., 36, 11, 1135-1151, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.