×

A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type. (English) Zbl 1178.60009

Summary: Random set theory is a useful tool to quantify lower and upper bounds on the probability of the occurrence of events given uncertain information represented for example by possibility distributions, probability boxes, or Dempster-Shafer structures, among others. In this paper it is shown that the belief and plausibility estimated by Dempster-Shafer evidence theory are basically approximations by Riemann-Stieltjes sums of the integrals of the lower and upper probability employed when using infinite random sets of indexable type. In addition, it is shown that the evaluation of the lower and upper probability is more efficient if it is done by pseudo-Monte Carlo strategies. This discourages the use of Dempster-Shafer evidence theory and suggests the use of infinite random sets of indexable type specially in high dimensions, not only because the initial discretization step of the basic variables is not required anymore, but also because the evaluation of the lower and upper probability of events is much more efficient using the different techniques for multidimensional integration like Monte Carlo simulation.

MSC:

60D05 Geometric probability and stochastic geometry
60E15 Inequalities; stochastic orderings
65C05 Monte Carlo methods

Software:

QRM
Full Text: DOI

References:

[1] Alvarez, D. A., On the calculation of the bounds of probability of events using infinite random sets, Internat. J. Approx. Reasoning, 43, 3, 241-267 (2006) · Zbl 1109.68113
[2] D.A. Alvarez, Infinite random sets and applications in uncertainty analysis, Ph.D. Thesis, Leopold-Franzens Universität Innsbruck, Innsbruck, Austria, April 2007.; D.A. Alvarez, Infinite random sets and applications in uncertainty analysis, Ph.D. Thesis, Leopold-Franzens Universität Innsbruck, Innsbruck, Austria, April 2007.
[3] Baudrit, C.; Dubois, D.; Guyonnet, D., Joint propagation and exploitation of probabilistic and possibilistic information in risk assessment, IEEE Trans. Fuzzy Systems, 14, 5, 593-608 (2006)
[4] Baudrit, C.; Dubois, D.; Perrot, N., Representing parametric probabilistic models tainted with imprecision, Fuzzy Sets and Systems, 159, 15, 1913-1928 (2008) · Zbl 1192.68682
[5] C. Bertoluzza, M.A. Gil, D.A. Ralescu (Eds.), Statistical Modeling, Analysis and Management of Fuzzy Data, Studies in Fuzziness and Soft Computing, Vol. 87, Physica Verlag, Heidelberg, New York, 2002.; C. Bertoluzza, M.A. Gil, D.A. Ralescu (Eds.), Statistical Modeling, Analysis and Management of Fuzzy Data, Studies in Fuzziness and Soft Computing, Vol. 87, Physica Verlag, Heidelberg, New York, 2002. · Zbl 0980.00008
[6] G. De Cooman, M. Troffaes, E. Miranda, \(n\langle;\) http://www.sipta.org/isipta05/proceedings/017.html \(\rangle;\); G. De Cooman, M. Troffaes, E. Miranda, \(n\langle;\) http://www.sipta.org/isipta05/proceedings/017.html \(\rangle;\)
[7] Dempster, A. P., Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Statist., 38, 325-339 (1967) · Zbl 0168.17501
[8] Dubois, D.; Prade, H., The mean value of a fuzzy number, Fuzzy Sets and Systems, 24, 3, 279-300 (1987) · Zbl 0634.94026
[9] Dubois, D.; Prade, H., Possibility Theory (1988), Plenum Press: Plenum Press New York · Zbl 0645.68108
[10] Dubois, D.; Prade, H., Random sets and fuzzy interval analysis, Fuzzy Sets and Systems, 42, 1, 87-101 (1991) · Zbl 0734.65041
[11] Embrechts, P.; McNeil, A.; Straumann, D., Correlation and dependence in risk management: properties and pitfalls, (Dempster, M., Risk Management: Value at Risk and Beyond (2002), Cambridge University Press: Cambridge University Press Cambridge, UK), 176-223
[12] S. Ferson, V. Kreinovich, L. Ginzburg, D.S. Myers, K. Sentz, Constructing probability boxes and Dempster-Shafer structures, Report SAND2002-4015, Sandia National Laboratories, Albuquerque, NM, January 2003. Available at \(\langle;\) http://www.ramas.com/unabridged.zip \(\rangle;\); S. Ferson, V. Kreinovich, L. Ginzburg, D.S. Myers, K. Sentz, Constructing probability boxes and Dempster-Shafer structures, Report SAND2002-4015, Sandia National Laboratories, Albuquerque, NM, January 2003. Available at \(\langle;\) http://www.ramas.com/unabridged.zip \(\rangle;\)
[13] S. Ferson, R.B. Nelsen, J. Hajagos, D.J. Berleant, J. Zhang, W.T. Tucker, L.R. Ginzburg, W.L. Oberkampf, Dependence in probabilistic modelling, Dempster-Shafer theory and probability bounds analysis, Report SAND2004-3072, Sandia National Laboratories, Albuquerque, NM, October 2004. Available at \(\langle;\) http://www.ramas.com/depend.zip \(\rangle;\); S. Ferson, R.B. Nelsen, J. Hajagos, D.J. Berleant, J. Zhang, W.T. Tucker, L.R. Ginzburg, W.L. Oberkampf, Dependence in probabilistic modelling, Dempster-Shafer theory and probability bounds analysis, Report SAND2004-3072, Sandia National Laboratories, Albuquerque, NM, October 2004. Available at \(\langle;\) http://www.ramas.com/depend.zip \(\rangle;\)
[14] Fishman, G. S., Monte Carlo—Concepts, Algorithms and Applications (1996), Springer: Springer New York · Zbl 0859.65001
[15] Goodman, I., Fuzzy sets as equivalent classes of random sets, (Yager, R., Fuzzy Sets and Possibility Theory: Recent Developments (1982), Pergamon: Pergamon New York), 327-343
[16] Hall, J. W.; Lawry, J., Generation, combination and extension of random set approximations to coherent lower and upper probabilities, Reliab. Eng. System Safety, 85, 1-3, 89-101 (2004)
[17] Himmelberg, C. J., Measurable relations, Fund. Math., 87, 53-72 (1975) · Zbl 0296.28003
[18] Joslyn, C.; Booker, J. M., Generalized information theory for engineering modeling and simulation, (Nikolaidis, E.; Ghiocel, D., Engineering Design Reliability Handbook (2004), CRC Press: CRC Press Boca Raton, FL), pp. 9:1-9:40
[19] Klir, G. J., Uncertainty and Information: Foundations of Generalized Information Theory (2006), Wiley: Wiley New Jersey · Zbl 1280.94004
[20] G.J. Klir, M.J. Wierman, Uncertainty-Based Information: Elements of Generalized Information Theory, Studies in Fuzziness and Soft Computing, Vol. 15, Physica-Verlag, Heidelberg, Germany, 1998.; G.J. Klir, M.J. Wierman, Uncertainty-Based Information: Elements of Generalized Information Theory, Studies in Fuzziness and Soft Computing, Vol. 15, Physica-Verlag, Heidelberg, Germany, 1998. · Zbl 0902.68061
[21] Kolmogorov, A. N.; Fomin, S. V., Introductory Real Analysis (1970), Dover Publications: Dover Publications New York, ISBN O-486-61226-0 · Zbl 0213.07305
[22] Krommer, A. R.; Ueberhuber, C. W., Computational Integration (1998), SIAM: SIAM Philadelphia · Zbl 0903.65019
[23] Loève, M., Probability Theory I (1977), Springer: Springer Berlin · Zbl 0359.60001
[24] A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance, Princeton University Press, Princeton, NJ, 2005.; A.J. McNeil, R. Frey, P. Embrechts, Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance, Princeton University Press, Princeton, NJ, 2005. · Zbl 1089.91037
[25] Miranda, E.; Couso, I.; Gil, P., A random set characterisation of possibility measures, Inform. Sci., 168, 1-4, 51-75 (2004) · Zbl 1074.28010
[26] Molchanov, I. S., Theory of Random Sets (2005), Springer: Springer Berlin · Zbl 0936.60006
[27] R.B. Nelsen, An Introduction to Copulas, Lectures Notes in Statistics, Vol. 139, Springer, New York, 1999.; R.B. Nelsen, An Introduction to Copulas, Lectures Notes in Statistics, Vol. 139, Springer, New York, 1999. · Zbl 0909.62052
[28] Nguyen, H., On random sets and belief functions, J. Math. Anal. Appl., 65, 531-542 (1978) · Zbl 0409.60016
[29] Nguyen, H. T., An Introduction to Random Sets (2006), Chapman & Hall, CRC: Chapman & Hall, CRC Boca Raton, FL · Zbl 1100.60001
[30] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.; H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992. · Zbl 0761.65002
[31] W.L. Oberkampf, J.C. Helton, K. Sentz, Mathematical representation of uncertainty, in: Non-deterministic Approached Forum 2001, AIAA-2001-1645, American Institute of Aeronautics and Astronautics, Seattle, WA, April 16-19, 2001.; W.L. Oberkampf, J.C. Helton, K. Sentz, Mathematical representation of uncertainty, in: Non-deterministic Approached Forum 2001, AIAA-2001-1645, American Institute of Aeronautics and Astronautics, Seattle, WA, April 16-19, 2001.
[32] Rubinstein, R.; Kroese, D., Simulation and the Monte Carlo Method (2007), Wiley: Wiley New York
[33] K. Sentz, S. Ferson, Combination of evidence in Dempster-Shafer theory, Report SAND2002-0835, Sandia National Laboratories, Albuquerque, NM, 2002.; K. Sentz, S. Ferson, Combination of evidence in Dempster-Shafer theory, Report SAND2002-0835, Sandia National Laboratories, Albuquerque, NM, 2002.
[34] Sklar, A., Fonctions de répartition à \(n\) dimensions et leurs marges, Publ. Inst. Statis. Univ. Paris, 8, 229-231 (1959) · Zbl 0100.14202
[35] Sklar, A., Random variables, distribution functions, and copulas—a personal look backward and forward, (Rüschendorf, L.; Schweizer, B.; Taylor, M., Distributions with Fixed Marginals and Related Topics (1996), Institute of Mathematical Statistics: Institute of Mathematical Statistics Hayward, CA), 1-14
[36] Tonon, F., Using random set theory to propagate epistemic uncertainty through a mechanical system, Reliab. Eng. System Safety, 85, 1-3, 169-181 (2004)
[37] Tonon, F., Some properties of a random set approximation to upper and lower distribution functions, Internat. J. Approx. Reasoning, 48, 1, 174-184 (2007) · Zbl 1184.68522
[38] Walley, P., Statistical Reasoning with Imprecise Probabilities (1991), Chapman & Hall: Chapman & Hall London · Zbl 0732.62004
[39] Wilson, N., Algorithms for Dempster-Shafer theory, (Kohlas, J.; Moral, S., Handbook of Defeasible Reasoning and Uncertainty Management Systems, Algorithms for Uncertainty and Defeasible Reasoning, Vol. 5 (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), 421-476, Available at \(\langle\) http://4c.ucc.ie/web/upload/publications/inBook/Handbook00wilson.pdf \(\rangle \) · Zbl 1015.68205
[40] Wolkenhauer, O., Data Engineering (2001), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.