×

Viscosity solutions to a new phase-field model with Neumann boundary condition for solid-solid phase transitions. (English) Zbl 1444.35091

Summary: We shall study an initial-boundary value problem of a new phase field model, which is a degenerate parabolic equation coupled to a linear elasticity sub-system, used to describe the solid-solid phase transitions in elastically deformable solid materials. We establish a series of approximate solutions to the initial boundary value problem, and prove that the viscosity solutions to this initial boundary value problem exist, in a one dimensional case.

MSC:

35K20 Initial-boundary value problems for second-order parabolic equations
74N15 Analysis of microstructure in solids
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Alber, H. D.; Zhu, P., Solutions to a model with nonuniformly parabolic terms for phase evolution driven by configurational forces, SIAM J. Appl. Math., 66, 2, 680-699 (2006) · Zbl 1096.35068
[2] Alber, H. D.; Zhu, P., Evolution of phase boundaries by configurational forces, Arch. Ration. Mech. Anal., 185, 2, 235-286 (2007) · Zbl 1117.74045
[3] Alber, H. D.; Zhu, P., Solutions to a model with Neumann boundary conditions for phase transitions driven by configurational forces, Nonlinear Anal., Real World Appl., 12, 3, 1797-1809 (2011) · Zbl 1215.35012
[4] Alber, H. D.; Zhu, P., Comparison of a rapidly converging phase field model for interfaces in solids with the Allen-Cahn model, J. Elast., 111, 2, 153-221 (2013) · Zbl 1272.35031
[5] Armstrong, S. N.; Tran, H. V., Viscosity solutions of general viscous Hamilton-Jacobi equations, Math. Ann., 361, 3-4, 647-687 (2015) · Zbl 1327.35058
[6] Barles, G.; Perthame, B., Discontinuous solutions of deterministic optimal stopping time problems, ESAIM: Math. Model. Numer. Anal., 21, 4, 557-579 (1987) · Zbl 0629.49017
[7] Barron, E. N.; Bocea, M.; Jensen, R. R., Viscosity solutions of stationary Hamilton-Jacobi equations and minimizers of \(L^\infty\) functionals, Proc. Am. Math. Soc., 145, 12, 5257-5265 (2017) · Zbl 1380.35051
[8] Chen, Y. G.; Giga, Y.; Goto, S., Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differ. Geom., 33, 7, 375-412 (1999)
[9] Crandall, M. G.; Evans, L. C.; Lions, P. L., Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 282, 2, 487-502 (1984) · Zbl 0543.35011
[10] Crandall, M. G.; Ishii, H.; Lions, P. L., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1, 1-67 (1992) · Zbl 0755.35015
[11] Ekren, I.; Keller, C.; Touzi, N., On viscosity solutions of path dependent PDEs, Ann. Probab., 42, 1, 204-236 (2014) · Zbl 1320.35154
[12] Giga, Y., Surface Evolution Equations: A Level Set Approach (2006), Birkhäuser Verlag: Birkhäuser Verlag Basel, Boston, Berlin · Zbl 1096.53039
[13] Ilmanen, T., Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Differ. Geom., 38, 2, 417-461 (1993) · Zbl 0784.53035
[14] Ishii, H., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., 83, 1, 26-78 (1990) · Zbl 0708.35031
[15] Jensen, R., The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Ration. Mech. Anal., 101, 1, 1-27 (1988) · Zbl 0708.35019
[16] Ladyzenskaya, O.; Solonnikov, V.; Uralceva, N., Linear and Quasilinear Equations of Parabolic Type, Trans. Math. Monogr., vol. 23 (1968), AMS: AMS Providence, RI · Zbl 0174.15403
[17] Lions, P. L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc., 277, 1, 1-42 (1983) · Zbl 0599.35024
[18] Ninomiya, H.; Taniguchi, M., Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differ. Equ., 213, 1, 204-233 (2006) · Zbl 1159.35378
[19] Sheng, W.; Zhu, P., Viscosity solutions to a model for solid-solid phase transitions driven by material forces, Nonlinear Anal., Real World Appl., 39, 14-32 (2018) · Zbl 1462.74127
[20] Silvestre, L.; Sirakov, B., Boundary regularity for viscosity solutions of fully nonlinear elliptic equations, Commun. Partial Differ. Equ., 39, 9, 1694-1717 (2014) · Zbl 1308.35043
[21] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl., 146, 65-96 (1986) · Zbl 0629.46031
[22] Zhu, P., Solvability via viscosity solutions for a model of phase transitions driven by configurational forces, J. Differ. Equ., 251, 10, 2833-2852 (2011) · Zbl 1262.35196
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.