×

Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. (English) Zbl 1444.34083

Summary: In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral boundary condition. We also establish certain conditions for the existence and uniqueness of solutions for such a class of fractional differential equations using Caputo fractional derivative. The arguments are based on generalized Diaz-Margolis’s fixed point theorem. We provide two examples, which shows the validity of our main results.

MSC:

34K20 Stability theory of functional-differential equations
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations

References:

[1] Leibnitz, GW: Leibnitzen’s Mathematische Schriften, vol. 2, pp. 301-302. Georg Olm, Hildesheim (1962)
[2] Lacroix, SF: Traite du Calcul Differentiel et du Calcul Integral, vol. 2, pp. 409-410. Mme. recourcier, Paris (1819)
[3] Anastassiou, GA: Advances on Fractional Inequalities. Springer, New York (2011) · Zbl 1230.26004 · doi:10.1007/978-1-4614-0703-4
[4] Abbas, S, Benchohra, M, N’Guerekata, GM: Topics in Fractional Differential Equations. Springer, New York (2012) · Zbl 1273.35001 · doi:10.1007/978-1-4614-4036-9
[5] Abbas, S, Benchohra, M, N’Guerekata, GM: Advanced Fractional Differential and Integral Equations. Nova Publ. (Nova Science Publishers), New York (2014) · Zbl 1314.34002
[6] Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[7] Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives, Theory and Applications. Gordon & Breach, Yverdon (1993) · Zbl 0818.26003
[8] Benchohra, M, Lazreg, JE: Nonlinear fractional implicit differential equations. Commun. Appl. Anal. 17, 471-482 (2013) · Zbl 1300.34014
[9] Benchohra, M, Lazreg, JE: Existence and uniqueness results for nonlinear implicit fractional differential equations with boundary conditions. Rom. J. Math. Comput. Sci. 4, 60-72 (2014) · Zbl 1313.34002
[10] Hilfer, R: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) · Zbl 0998.26002 · doi:10.1142/3779
[11] Lakshmikantham, V, Leela, S, Vasundhara, J: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009) · Zbl 1188.37002
[12] Ortigueira, MD: Fractional Calculus for Scientists and Engineers. Lecture Notes in Electrical Engineering. Springer, Dordrecht (2011) · Zbl 1251.26005 · doi:10.1007/978-94-007-0747-4
[13] Balachandran, K, Kiruthika, S: Existence of solutions of abstract fractional impulsive semilinear evolution equations. Electron. J. Qual. Theory Differ. Equ. 2010, Article ID 4 (2010) · Zbl 1201.34091
[14] Benchohra, M, Seba, D: Impulsive fractional differential equations in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, Article ID 8 (2009) · Zbl 1189.26005
[15] Kosmatov, N: Initial value problems of fractional order with fractional impulsive conditions. Results Math. 63, 1289-1310 (2013) · Zbl 1286.34011 · doi:10.1007/s00025-012-0269-3
[16] Wang, G, Zhang, L, Song, G: Systems of first order impulsive fractional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. TMA 74, 974-982 (2011) · Zbl 1223.34091 · doi:10.1016/j.na.2010.09.054
[17] Mardanov, MJ, Mahmudov, NI, Sharifov, YA: Existence and uniqueness theorems for impulsive fractional differential equations with two-point and integral boundary conditions. Sci. World J. 2014, Article ID 918730 (2014) · doi:10.1155/2014/918730
[18] Ulam, SM: A Collection of Mathematical Problems. Interscience, New York (1968) · Zbl 0086.24101
[19] Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222-224 (1941) · Zbl 0061.26403 · doi:10.1073/pnas.27.4.222
[20] Hyers, DH, Isac, G, Rassias, Th: Stability of Functional Equations in Several Variables. Birkhäuser, Boston (1998) · Zbl 0907.39025 · doi:10.1007/978-1-4612-1790-9
[21] Li, T, Zada, A: Connections between Hyers-Ulam stability and uniform exponential stability of discrete evolution families of bounded linear operators over Banach spaces. Adv. Differ. Equ. 2016, Article ID 153 (2016) · Zbl 1419.39038 · doi:10.1186/s13662-016-0881-8
[22] Li, T, Zada, A, Faisal, S: Hyers-Ulam stability of nth order linear differential equations. J. Nonlinear Sci. Appl. 9, 2070-2075 (2016) · Zbl 1337.34052
[23] Rassias, ThM: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[24] Tang, S, Zada, A, Faisal, S, El-Sheikh, MMA, Li, T: Stability of higher-order nonlinear impulsive differential equations. J. Nonlinear Sci. Appl. 9, 4713-4721 (2016) · Zbl 1350.34022
[25] Zada, A, Ali, W, Farina, S: Hyers-Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods Appl. Sci. (2017). doi:10.1002/mma.4405 · Zbl 1387.34026 · doi:10.1002/mma.4405
[26] Zada, A, Faisal, S, Li, Y: On the Hyers-Ulam stability of first-order impulsive delay differential equations. J. Funct. Spaces 2016, Article ID 8164978 (2016) · Zbl 1342.34100
[27] Zada, A, Faisal, S, Li, Y: Hyers-Ulam-Rassias stability of non-linear delay differential equations. J. Nonlinear Sci. Appl. 10, 504-510 (2017) · Zbl 1412.35032 · doi:10.22436/jnsa.010.02.15
[28] Zada, A, Wang, P, Lassoued, D, Li, T: Connections between Hyers-Ulam stability and uniform exponential stability of 2-periodic linear nonautonomous systems. Adv. Differ. Equ. 2017, Article ID 192 (2017) · Zbl 1422.34172 · doi:10.1186/s13662-017-1248-5
[29] Zada, A, Shah, SO: Hyers-Ulam stability of first-order non-linear delay differential equations with fractional integrable impulses. Hacet. J. Math. Stat. (2017). doi:10.15672/HJMS.2017.496 · doi:10.15672/HJMS.2017.496
[30] Zada, A, Shah, SO, Shah, R: Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problem. Appl. Math. Comput. 271, 512-518 (2015) · Zbl 1410.39049
[31] Zada, A, Shah, R: A fixed point approach to the stability of a nonlinear Volterra integrodifferential equations with delay. Hacet. J. Math. Stat. (2017). doi:10.15672/HJMS.2017.467 · doi:10.15672/HJMS.2017.467
[32] Wang, J, Feckan, M, Zhou, Y: Ulam’s type stability of impulsive ordinary differential equations. J. Math. Anal. Appl. 395, 258-264 (2012) · Zbl 1254.34022 · doi:10.1016/j.jmaa.2012.05.040
[33] Jung, SM: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis. Springer, New York (2011) · Zbl 1221.39038 · doi:10.1007/978-1-4419-9637-4
[34] Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) · Zbl 1092.45003 · doi:10.1016/S0304-0208(06)80001-0
[35] Jung, CJ: On generalized complete metric spaces. Bull. Am. Math. Soc. 75(1), 113-116 (1969) · Zbl 0194.23801 · doi:10.1090/S0002-9904-1969-12165-8
[36] Diaz, JB, Margolis, B: A fixed point theorem of alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305-309 (1968) · Zbl 0157.29904 · doi:10.1090/S0002-9904-1968-11933-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.