×

Classifying complex geodesics for the Carathéodory metric on low-dimensional Teichmüller spaces. (English) Zbl 1444.32013

Let \(\mathcal T=\mathcal T_{g,n}\) be the Teichmüller space of a finite-type orientable surface \(S_{g,n}\). The authors study the problem when the Carathéodory and Kobayashi metrics for \(\mathcal T\) coincide. It is equivalent to prove that every Teichmüller disk \(\tau:\mathbb H\longrightarrow\mathcal T\) is a holomorphic retract of \(\mathcal T\), where \(\mathbb H\subset\mathbb C\) stands for the upper half-plane. It is well known that each Teichmüller disk \(\tau\) is generated by a unit-norm holomorphic quadratic differential \(\varphi\); we write \(\tau=\tau^\varphi\).
The main result states that a Teichmüller disk \(\tau^\varphi\) in \(\mathcal T_{0,5}\) or \(\mathcal T_{1,2}\) is a holomorphic retract if and only if the zeros of \(\varphi\) have all even order.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
30F60 Teichmüller theory for Riemann surfaces

References:

[1] Antonakoudis, S., Isometric disks are holomorphic, Invent. Math., 207, 1289-1299 (2017) · Zbl 1375.32027 · doi:10.1007/s00222-016-0685-1
[2] Antonakoudis, S., Teichmüller spaces and bounded symmetric domains do not mix isometrically, Geom. Funct. Anal., 27, 453-465 (2017) · Zbl 1369.32008 · doi:10.1007/s00039-017-0404-0
[3] Earle, C., On the Carathéodory metric in Teichmüller spaces, Discontinuous Groups and Riemann Surfaces, 99-103 (1974), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0294.32015
[4] Farb, B.; Margalit, D., A Primer on Mapping Class Groups (2011), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 1245.57002
[5] Gekhtman, D., Asymptotics of the translation flow on holomorphic maps out of the polyplane, Conform. Geom. Dyn., 23, 1-16 (2019) · Zbl 1417.32002 · doi:10.1090/ecgd/330
[6] Gupta, S.; Seshadri, H., On domains biholomorphic to Teichmüller spaces, Int. Math. Res. Not. IMRN (2018)
[7] Jarnicki, M.; Pflug, P., Invariant Distances andMetrics in Complex Analysis (1993), Berlin: Walter de Gruyter, Berlin · Zbl 0789.32001
[8] Jenkins, J., On the existence of certain general extremal metrics, Ann. of Math., 66, 440-453 (1957) · Zbl 0082.06301 · doi:10.2307/1969901
[9] Kerckhoff, S., The asymptotic geometry of Teichmuller space, Topology, 19, 23-41 (1980) · Zbl 0439.30012 · doi:10.1016/0040-9383(80)90029-4
[10] Kra, I., The Carathéodory metric on abelian Teichmüller disks, J. Analyse Math., 40, 129-143 (1981) · Zbl 0487.32017 · doi:10.1007/BF02790158
[11] Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109, 427-474 (1981) · Zbl 0492.32025 · doi:10.24033/bsmf.1948
[12] Markovic, V., Carathéodory’s metric on Teichmüller spaces and L-shaped pillowcases, Duke Math. J., 167, 497-535 (2018) · Zbl 1486.32006 · doi:10.1215/00127094-2017-0041
[13] Masur, H., Interval exchange transformations and measured foliations, Ann. of Math., 115, 169-200 (1982) · Zbl 0497.28012 · doi:10.2307/1971341
[14] Minsky, Y.; Weiss, B., Nondivergence of horocyclic flows on moduli space, J. Reine Angew. Math., 552, 131-177 (2002) · Zbl 1079.32011
[15] Royden, H., Automorphisms and isometries of Teichmüller space, Advances in the Theory of Riemann Surfaces, 369-383 (1971), Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0222.32011
[16] Smillie, J.; Weiss, B., Minimal sets for flows on moduli space, Israel J. Math., 142, 249-260 (2004) · Zbl 1052.37025 · doi:10.1007/BF02771535
[17] Tanigawa, H., Holomorphic mappings into Teichmüller spaces, Proc. Amer. Math. Soc., 117, 71-78 (1993) · Zbl 0770.30041
[18] Veech, W., Gaussmeasures for transformations on the space of interval exchange transformations, Ann. of Math., 115, 215-242 (1982) · Zbl 0486.28014 · doi:10.2307/1971391
[19] Wright, A., Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., 19, 413-438 (2015) · Zbl 1318.32021 · doi:10.2140/gt.2015.19.413
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.