×

Nondivergence of horocyclic flows on moduli space. (English) Zbl 1079.32011

Summary: The earthquake flow and the Teichmüller horocycle flow are flows on bundles over the Riemann moduli space of a surface, and are similar in many respects to unipotent flows on homogeneous spaces of Lie groups. In analogy with results of Margulis, Dani and others in the homogeneous space setting,we prove strong nondivergence results for these flows. This extends previous work of Veech. As corollaries we obtain that every closed invariant set for the earthquake (resp. Teichmüller horocycle) flow contains a minimal set, and that almost every quadratic differential on a Teichmüller horocycle orbit has a uniquely ergodic vertical foliation.

MSC:

32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
22F30 Homogeneous spaces
37A17 Homogeneous flows
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] neous space setting originated with G. A. Margulis’ 1971 result that there are no divergent
[2] W. Abiko , The real-analytic theory of Teichm ller space, Springer Lect. Notes Math. 820 (1980).
[3] L. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill, 1973. · Zbl 0272.30012
[4] Bonahon F., Ann. Math. 124 pp 71– (1986)
[5] Bonahon F., Contemp. Math. 269 pp 1– (2001)
[6] P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Progr. Math. 106 (1992). · Zbl 0770.53001
[7] Canary R. D., London Math. Soc. Lect. Notes Ser. 111 pp 3– (1987)
[8] A. J. Casson and S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Cambridge University Press, 1988. · Zbl 0649.57008
[9] Dani S. G., Inv. Math. 51 pp 239– (1979)
[10] Dani S. G., Erg. Th. Dyn. Sys. 6 pp 167– (1986)
[11] S. G. Dani, Flows on Homogeneous Spaces, A Review, Proceedings of a Warwick Conference, Cambridge University Press, 1996. · Zbl 0852.58055
[12] Dani S. G., Inv. Math. 98 pp 405– (1989)
[13] Eskin A., Geom. Funct. Anal. 7 pp 48– (1997)
[14] A. Fathi, F. Laudenbach, and V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque 66-67 (1979).
[15] F. Gardiner, Teichm ller Theory and Quadratic Di erentials, Wiley Interscience, 1987.
[16] Masur F. Gardiner, Compl. Var. Th. Appl. 16 pp 209– (1991)
[17] Hedlund G., Duke Math. J. 2 pp 530– (1936)
[18] Masur J. Hubbard, Acta Math. 142 pp 221– (1979)
[19] Keane M., Math. Z. 141 pp 25– (1975)
[20] Kerckho S., Topology 19 pp 23– (1980)
[21] Kerckho S., Ann. Math. 117 pp 235– (1983)
[22] Kerckho S., Ann. Math. 124 pp 293– (1980)
[23] Margulis D. Kleinbock, Ann. Math. 148 pp 339– (1998)
[24] Kra I., Acta Math. 146 pp 231– (1981)
[25] U. Krengel, Ergodic Theorems, Walter de Gruyter, 1985.
[26] Levitt G., Topology 22 pp 119– (1983)
[27] G. A. Margulis, On the Action of Unipotent Groups in the Space of Lattices, Proc. Summer School on Group Representations, Bolyai Janos Math. Soc. Budapest (1971), 365-370.
[28] G. A. Margulis, Dynamical and Ergodic Properties of Subgroup Actions on Homogeneous Spaces with Applications to Number Theory, Proc. of ICM (Kyoto 1990), Math. Soc. of Japan and Springer (1991), 193-215. · Zbl 0747.58017
[29] Maskit B., Ann. Acad. Sci. Fenn. 10 pp 381– (1985)
[30] Masur H., Ann. Math. 115 pp 169– (1982)
[31] Masur H., Duke Math. J. 66 pp 387– (1992)
[32] Minsky Y., Geom. 35 pp 151– (1992)
[33] D. Mumford, A Remark on Mahler’s Compactness Criterion, Proc. AMS 28 no. 1 (1971), 289-294. · Zbl 0215.23202
[34] Shah N. A., Duke J. Math. 75 pp 711– (1994)
[35] J. Stewart, Calculus, Concepts and Contexts, Brooks/Cole, 1997.
[36] W. Thurston, The Geometry and Topology of 3-Manifolds, Princeton Univ. Lect. Notes (1982), http://www. msri.org/publications/books/gt3m.
[37] W. Thurston, Earthquakes in two-dimensional hyperbolic geometry, in: Low-dimensional topology and Kleinian groups (Coventry/Durham 1984), Cambridge Univ. Press, Cambridge (1986), 91-112.
[38] Veech W. A., Erg. Th. Dyn. Sys. 19 pp 1093– (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.