×

On Ruan’s cohomological crepant resolution conjecture for the complexified Bianchi orbifolds. (English) Zbl 1444.14096

For a square-free positive integer \(m\) let \(\mathcal O_{-m}\) be the ring of integers in the imaginary quadratic number field \(\mathbb Q(\sqrt{-m})\) and let \(\Gamma=\text{PSL}_2(\mathcal O_{-m})\) be the corresponding Bianchi group. \(\Gamma\) acts naturally on the real hyperbolic three-space \(\mathcal H^3_{\mathbb R}\) and also its complexification \(\mathcal H^3_{\mathbb C}\) and so one defines the orbifolds \([\mathcal H^3_{\mathbb R}/\Gamma]\) and \([\mathcal H^3_{\mathbb C}/\Gamma]\). The latter is called a complexified Bianchi orbifold.
The paper under review computes the Chen-Ruan orbifold cohomology of the complexified Bianchi orbifolds. In the case that \(\pm 1\) are the only units in \(\mathcal O_{-m}\) this result can be summarized as \[H^d_{\text{CR}}([\mathcal H^3_{\mathbb C}/\Gamma])=H^d(\mathcal H^3_{\mathbb R}/\Gamma;\mathbb Q) \oplus \begin{cases}\mathbb Q^{\lambda_4+2\lambda_6-\lambda_6^*} & d=2\\ \mathbb Q^{\lambda_4-\lambda^*_4+2\lambda_6-\lambda_6^*} & d=3\\ 0 & \text{otherwise,} \end{cases}\] where \(\lambda_{2n}\) is the number of conjugacy classes of cyclic subgroups of order \(n\) in \(\Gamma\) and \(\lambda^*_{2n}\) is the number of conjugacy classes of those of them which are contained in a dihedral subgroup of order \(2n\) in \(\Gamma\). The cohomology of the quotient space \(\mathcal H^3_{\mathbb R}/\Gamma\) has been computed numerically elsewhere for a large scope of Bianchi groups.
The paper under review also finds the Chen-Ruan cup product and proves the cohomological crepant resolution conjecture: if \(Y\to \mathcal H^3_{\mathbb C}/\Gamma\) is a crepant resolution then there is an isomorphism as graded \(\mathbb Q\)-algebras between the Chen-Ruan cohomology ring of \([\mathcal H^3_{\mathbb C}/\Gamma]\) and the the singular cohomology ring of \(Y\).

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
55N32 Orbifold cohomology

References:

[1] 10.1017/CBO9780511543081 · doi:10.1017/CBO9780511543081
[2] ; Aurich, Hyperbolic geometry and applications in quantum chaos and cosmology. London Math. Soc. Lecture Note Ser., 397, 229 (2012) · Zbl 1237.51005
[3] 10.2307/1970457 · Zbl 0154.08602 · doi:10.2307/1970457
[4] 10.1016/j.jpaa.2015.08.002 · Zbl 1401.11100 · doi:10.1016/j.jpaa.2015.08.002
[5] 10.1007/BF01443558 · JFM 24.0188.02 · doi:10.1007/BF01443558
[6] 10.1142/S0129167X09005479 · Zbl 1190.14053 · doi:10.1142/S0129167X09005479
[7] 10.1090/S0894-0347-01-00368-X · Zbl 0966.14028 · doi:10.1090/S0894-0347-01-00368-X
[8] 10.1007/BF01361440 · Zbl 0145.09402 · doi:10.1007/BF01361440
[9] 10.4310/MRL.2008.v15.n3.a4 · Zbl 1198.14014 · doi:10.4310/MRL.2008.v15.n3.a4
[10] 10.1090/conm/310/05398 · doi:10.1090/conm/310/05398
[11] 10.1007/s00220-004-1089-4 · Zbl 1063.53091 · doi:10.1007/s00220-004-1089-4
[12] 10.5802/aif.2766 · Zbl 1275.53083 · doi:10.5802/aif.2766
[13] 10.1007/978-3-662-03626-6 · doi:10.1007/978-3-662-03626-6
[14] 10.1215/S0012-7094-03-11721-4 · Zbl 1086.14046 · doi:10.1215/S0012-7094-03-11721-4
[15] ; Fine, Algebraic theory of the Bianchi groups. Monographs and Textbooks in Pure and Applied Mathematics, 129 (1989) · Zbl 0760.20014
[16] 10.1007/BF01214824 · Zbl 0498.20036 · doi:10.1007/BF01214824
[17] 10.1007/978-1-4612-5961-9 · doi:10.1007/978-1-4612-5961-9
[18] 10.1007/978-1-4612-1700-8 · doi:10.1007/978-1-4612-1700-8
[19] ; Ito, Higher-dimensional complex varieties, 221 (1996)
[20] 10.1007/BF01443373 · JFM 07.0053.02 · doi:10.1007/BF01443373
[22] 10.1007/978-1-4757-6720-9 · doi:10.1007/978-1-4757-6720-9
[23] 10.1007/978-1-4939-9063-4 · doi:10.1007/978-1-4939-9063-4
[24] 10.1007/978-3-0348-8089-3 · doi:10.1007/978-3-0348-8089-3
[25] 10.1090/chel/355 · doi:10.1090/chel/355
[26] 10.1142/S0129167X07004436 · Zbl 1149.14010 · doi:10.1142/S0129167X07004436
[27] 10.1007/BF02422441 · JFM 15.0348.02 · doi:10.1007/BF02422441
[28] 10.1016/j.crma.2012.09.001 · Zbl 1273.20045 · doi:10.1016/j.crma.2012.09.001
[29] 10.1112/S1461157013000168 · Zbl 1328.11057 · doi:10.1112/S1461157013000168
[30] 10.1090/S0002-9947-2012-05690-X · Zbl 1307.11065 · doi:10.1090/S0002-9947-2012-05690-X
[31] 10.1016/j.jalgebra.2014.01.025 · Zbl 1296.11050 · doi:10.1016/j.jalgebra.2014.01.025
[32] 10.5802/aif.3047 · Zbl 1360.55007 · doi:10.5802/aif.3047
[33] 10.1016/j.jpaa.2010.09.005 · Zbl 1268.11072 · doi:10.1016/j.jpaa.2010.09.005
[34] 10.1016/0040-9383(95)00018-6 · Zbl 0872.14034 · doi:10.1016/0040-9383(95)00018-6
[35] 10.1090/conm/403/07597 · doi:10.1090/conm/403/07597
[36] 10.1016/0022-314X(92)90004-9 · Zbl 0762.11024 · doi:10.1016/0022-314X(92)90004-9
[37] 10.1007/978-1-4684-9458-7 · doi:10.1007/978-1-4684-9458-7
[38] ; Tjurina, Funkcional. Anal. i Priložen., 4, 77 (1970)
[39] 10.1007/BF01455567 · Zbl 0553.20023 · doi:10.1007/BF01455567
[40] 10.1007/BF02098485 · Zbl 0795.53074 · doi:10.1007/BF02098485
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.