×

Trivariate spline representations for computer aided design and additive manufacturing. (English) Zbl 1443.65012

Summary: Digital representations targeting design and simulation for Additive Manufacturing (AM) are addressed from the perspective of Computer Aided Geometric Design. We discuss the feasibility for multi-material AM for B-rep based CAD, STL, sculptured triangles as well as trimmed and block-structured trivariate locally refined spline representations. The trivariate spline representations support Isogeometric Analysis (IGA), and topology structures supporting these for CAD, IGA and AM are outlined. The ideas of (Truncated) Hierarchical B-splines, T-splines and LR B-splines are outlined and the approaches are compared. An example from the EC H2020 Factories of the Future Research and Innovation Actions CAxMan illustrates both trimmed and block-structured spline representations for IGA and AM.

MSC:

65D07 Numerical computation using splines
65D17 Computer-aided design (modeling of curves and surfaces)

References:

[1] https://www.mckinsey.com/business-functions/operations/our-insights/additive-manufacturing-a-long-term-game-changer-for-manufacturers; https://www.mckinsey.com/business-functions/operations/our-insights/additive-manufacturing-a-long-term-game-changer-for-manufacturers
[2] ISO/ASTM 52900:2015 (ASTM F2792), Additive manufacturing - General principles - Terminology, 2015.; ISO/ASTM 52900:2015 (ASTM F2792), Additive manufacturing - General principles - Terminology, 2015.
[3] T. Wohlers, T. Gornet, History of additive manufacturing, in Wohlers Report 2014, Wholers associates. 2014.; T. Wohlers, T. Gornet, History of additive manufacturing, in Wohlers Report 2014, Wholers associates. 2014.
[4] (Bjørke, Ø., Implementation of APS-Sculpured Surfaces in the CAD/CAM Systems CDM300 and Technovision in Advance Production Sytem - CAD/CAM of the Future (1987), Tapir Publisher: Tapir Publisher Trondheim, Norway), 184-207
[5] Cohen, E.; Lyche, T.; Riesenfeld, R. R., Discrete B- splines and subdivision techniques in computer-aided geometric design and computer graphics, Comput. Graph. Image Process., 14, 2, 87-111 (1980)
[6] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[7] Li, X.; Chen, F. L.; Kang, H. M., A survey on the local refinable splines, Sci. China Math., 59, 617-644 (2016) · Zbl 1338.65034
[8] Forsey, D. R.; Barrels, R. H., Hierarchical B-spline refinement, Comput. Graph., 22, 205-212 (1988)
[9] Kraft, R., Adaptive und Linear Unabhangige Multilevel B-Splines Und Ihre Anwendungen (1998), Math Inst A, University of Stuttgatt, (Ph.D. thesis) · Zbl 0903.68195
[10] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, CAGD, 29, 7, 485-498 (2012) · Zbl 1252.65030
[11] Mokri, D.; Jüttler, B.; Giannelli, C., On the completeness of hierarchical tensor product B-splines, J. Comput. Appl. Math., 27, 53-70 (2014) · Zbl 1321.65020
[12] Sederberg, T. W.; Cardon, D. L.; Finnigan, G. T.; North, N. S.; Zheng, J.; Lyche, T., T-spline simplification and local refinement, ACM Trans. Graph., 23, 276-283 (2004)
[13] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2015) · Zbl 1151.74419
[14] Buffa, A.; Cho, D.; Sangalli, G., Linear independence of the T-spline blending functions associated with some particular T-meshes, Comput. Methods Appl. Mech. Engrg., 199, 23-24, 1437-1445 (2010) · Zbl 1231.65027
[15] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213-216, 206-222 (2012) · Zbl 1243.65030
[16] Zhang, Y.; Wanga, W.; Hughes, Solid T-spline construction from boundary representations for genus-zero geometry, Comput. Methods Appl. Mech. Engrg., 249-252, 185-197 (2012) · Zbl 1348.65057
[17] Wei, X.; Zhang, Y. J.; Liu, L.; Hughes, T. J.R., (Truncated T-splines: Fundamentals and Methods. Truncated T-splines: Fundamentals and Methods, Computer Methods in Applied Mechanics and Engineering Special Issue on Isogeometric Analysis, vol. 316 (2017)), 349-372 · Zbl 1439.65018
[18] T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs. ACM Trans. Graph. 22 (3) (203) 477-484.; T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs. ACM Trans. Graph. 22 (3) (203) 477-484.
[19] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014) · Zbl 1296.65021
[20] Johannessen, K. A.; Remonatol, F.; Kvamsdal, K. A., On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines, Comput. Methods Appl. Mech. Engrg., 291, 64-101 (2016) · Zbl 1425.65027
[21] ISO 10303-28:2007, Industrial automation systems and integration — Product data representation and exchange — Part 28: Implementation methods: XML representations of EXPRESS schemas and data, using XML schemas.; ISO 10303-28:2007, Industrial automation systems and integration — Product data representation and exchange — Part 28: Implementation methods: XML representations of EXPRESS schemas and data, using XML schemas.
[22] ISO 10303-42:2016, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resource: Geometric and topological representation.; ISO 10303-42:2016, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resource: Geometric and topological representation.
[23] ISO/DIS 10303-42:2015, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resource: Geometric and topological representation.; ISO/DIS 10303-42:2015, Industrial automation systems and integration — Product data representation and exchange — Part 42: Integrated generic resource: Geometric and topological representation.
[24] P.T. Boggs, A. Althsuler, A.R. Larzelere, E.J. Walsh, R.L Clay, M.F. Hardwick, DART system analysis. United States: N. p., 2005 .Web. http://dx.doi.org/10.2172/876325; P.T. Boggs, A. Althsuler, A.R. Larzelere, E.J. Walsh, R.L Clay, M.F. Hardwick, DART system analysis. United States: N. p., 2005 .Web. http://dx.doi.org/10.2172/876325
[25] Dokken, T.; Skytt, V.; Haenisch, J.; Bengtsson, K., Isogeometric representation and analysis: Bridging the gap between cad and analysis, (47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition. 5-8 January 2009 (2009), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Orlando, Florida)
[26] Skytte, V.; Dokken, T., Models for isogeometric analysis from CAD, (Buffa, A.; Sangalli, G., IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs. IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs, C.I.M.E. Lecure Notes in Mathematics, vol. 2161 (2016), Springer), 71-86 · Zbl 1356.65059
[27] Weeger, O.; Kang, Y.; Yeung, S.-K.; Dunn, M. L., Optimal design and manufacture of active rod structures with spatially variable materials, 3D Print. Addit. Manuf., 3, 4, 204-215 (2016)
[28] B. Ezair, B., G. Elber, Fabricating functionally graded material objects using trimmed trivariate volumetric representations. in: Proceedings of SMI’2017 Fabrication and Sculpting Event, FASE, Berkeley, CA, USA, 2017, June 2017.; B. Ezair, B., G. Elber, Fabricating functionally graded material objects using trimmed trivariate volumetric representations. in: Proceedings of SMI’2017 Fabrication and Sculpting Event, FASE, Berkeley, CA, USA, 2017, June 2017.
[29] Massarwi, F.; G. Elber, G., A B-spline based framework for volumetric object modeling, CAD, 78, 36-47 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.