×

Ground state solutions for Kirchhoff type equations with asymptotically 4-linear nonlinearity. (English) Zbl 1443.35040

Summary: This paper is concerned with the following Kirchhoff type equation: \[ \begin{cases} -\left(a+b\int_\Omega |\nabla v|^2\right)\Delta v=f(x,v)\quad & \text{in }\Omega,\\ v=0 & \text{on }\partial\Omega. \end{cases} \] Assuming that the primitive of \(f\) is asymptotically 4-linear as \(|v|\to\infty\), a homeomorphism between the Nehari manifold and a subset of unit sphere is constructed based on some observations and new techniques. Inspired by recent work of A. Szulkin and T. Weth [in: Handbook of nonconvex analysis and applications. Somerville, MA: International Press. 597–632 (2010; Zbl 1218.58010)], ground state solutions for the equation above are obtained, as well as infinitely many pairs of nontrivial solutions for case \(f(x,v)\) is odd with respect to \(v\).

MSC:

35J60 Nonlinear elliptic equations
35J20 Variational methods for second-order elliptic equations

Citations:

Zbl 1218.58010
Full Text: DOI

References:

[1] Alves, C. O.; Corrêa, F. J.S. A.; Figueiredo, G. M., On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl., 2, 409-417 (2010) · Zbl 1198.35281
[2] Batkam, C. J., Ground state solution of a nonlocal boundary-value problem, Electron. J. Differential Equations, 2013, 257, 1-8 (2013) · Zbl 1288.35221
[3] Chen, C.-Y.; Kuo, Y.-C.; Wu, T.-F., The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations, 250, 1876-1908 (2011) · Zbl 1214.35077
[4] Corrêa, F. J.S. A., On positive solutions of nonlocal and nonvariational elliptic problems, Nonlinear Anal., 59, 1147-1155 (2004) · Zbl 1133.35043
[5] He, X. M.; Zou, W. M., Multiplicity of solutions for a class of Kirchhoff type problems, Acta Math. Appl. Sin., 26, 387-394 (2010) · Zbl 1196.35077
[6] He, X. M.; Zou, W. M., Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal., 70, 1407-1414 (2009) · Zbl 1157.35382
[7] Lei, C. Y.; Liao, J. F.; Tang, C. L., Multiple positive solutions for Kirchhoff type of problems with singularity and critical exponents, J. Math. Anal. Appl., 421, 521-538 (2015) · Zbl 1323.35016
[8] Perera, K.; Zhang, Z. T., Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221, 246-255 (2006) · Zbl 1357.35131
[9] Wei, S., Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 259, 1256-1274 (2015) · Zbl 1319.35023
[10] Zhang, Z.; Perera, K., Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow, J. Math. Anal. Appl., 317, 456-463 (2006) · Zbl 1100.35008
[11] Kirchhoff, G., Mechanik (1883), Teubner: Teubner Leipzig · JFM 08.0542.01
[12] Arosio, A.; Panizzi, S., On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348, 305-330 (1996) · Zbl 0858.35083
[13] Chipot, M.; Lovat, B., Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal., 30, 4619-4627 (1997) · Zbl 0894.35119
[14] Lions, J. L., On some questions in boundary value problems of mathematical physics, (Contemporary developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977). Contemporary developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), North-Holland Mathematical Studies, vol. 30 (1978), North-Holland: North-Holland Amsterdam), 284-346 · Zbl 0404.35002
[15] Mao, A. M.; Zhang, Z. T., Sing-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70, 1275-1287 (2009) · Zbl 1160.35421
[16] Cheng, B. T.; Wu, X., Existence results of positive solutions of Kirchhoff type problems, Nonlinear Anal., 71, 4883-4892 (2009) · Zbl 1175.35038
[17] Bensedik, A.; Bouchekif, M., On an elliptic equation of Kirchhoff-type with a potential asymptotically linear at infinity, Math. Comput. Modelling, 49, 1089-1096 (2009) · Zbl 1165.35364
[18] He, X. M.; Zou, W. M., Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(R^3\), J. Differential Equations, 2, 1813-1834 (2012) · Zbl 1235.35093
[19] He, Y.; Li, G. B.; Peng, S. J., Concentrating bound states for Kirchhoff type problems in \(R^3\) involving critical Sobolev exponents, Adv. Nonlinear Stud., 14, 483-510 (2014) · Zbl 1305.35033
[20] Liu, Z. S.; Guo, S. J., Existence and concentration of positive ground states for a Kirchhoff equation involving critical Sobolev exponent, Z. Angew. Math. Phys., 66, 747-769 (2015) · Zbl 1323.35040
[21] Liu, Z. S.; Guo, S. J., On ground states for the Kirchhoff-type problem with a general critical nonlinearity, J. Math. Anal. Appl., 426, 267-287 (2015) · Zbl 1312.35109
[22] Liu, Z. S.; Guo, S. J., Existence of positive ground state solutions for Kirchhoff type problems, Nonlinear Anal., 120, 1-13 (2015) · Zbl 1318.35121
[23] Sun, J. T.; Wu, T. F., Ground state solutions for an indefinite Kirchhoff type problem with steep potential well, J. Differential Equations, 256, 1771-1792 (2014) · Zbl 1288.35219
[24] Wang, J.; Tian, L. X.; Xu, J. X.; Zhang, F. B., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth, J. Differential Equations, 253, 2314-2351 (2012) · Zbl 1402.35119
[25] Wu, Y. Z.; Huang, Y. S.; Liu, Z., On a Kirchhoff type problem in \(R^N\), J. Math. Anal. Appl., 425, 548-564 (2015) · Zbl 1312.35110
[26] Zhang, H.; Zhang, F. B., Ground states for the nonlinear Kirchhoff type problems, J. Math. Anal. Appl., 423, 1671-1692 (2015) · Zbl 1333.35042
[27] Szulkin, A.; Weth, T., The Method of Nehari Manifold, Handbook of Nonconvex Analysis and Applications, 597-632 (2010), Int. Press: Int. Press Somerville · Zbl 1218.58010
[28] Willem, M., Minimax Theorems (1996), Birkhäuser: Birkhäuser Boston · Zbl 0856.49001
[29] Bahri, A., Topological results on a certain class of functionals and application, J. Funct. Anal., 41, 397-427 (1981) · Zbl 0499.35050
[30] Pankov, A., Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73, 259-287 (2005) · Zbl 1225.35222
[31] Fang, X. D.; Szulkin, A., Multiple solutions for a quasilinear Schrödinger equation, J. Differential Equations, 254, 2015-2032 (2013) · Zbl 1263.35113
[32] Qin, D. D.; Tang, X. H., Asymptotically linear Schrödinger equation with zero on the boundary of the spectrum, Electron. J. Differential Equations, 2015, 213, 1-15 (2015) · Zbl 1330.35104
[33] Tang, X. H., New conditions on nonlinearity for a periodic Schrödinger equation having zero as spectrum, J. Math. Anal. Appl., 413, 1, 392-410 (2014) · Zbl 1312.35103
[34] Zhao, F. K.; Zhao, L. G.; Ding, Y. H., Infinitely many solutions for asymptotically linear periodic Hamiltonian elliptic systems, ESAIM Control Optim. Calc. Var., 16, 77-91 (2010) · Zbl 1189.35091
[35] Tang, X. H., Non-Nehari manifold method for superlinear Schrödinger equation, Taiwanese J. Math., 18, 1957-1979 (2014) · Zbl 1357.35163
[36] Fang, X. D.; Han, Z. Q., Ground state solution and multiple solutions to asymptotically linear Schrödinger equations, Bound. Value Probl., 2014, 216 (2014) · Zbl 1304.35239
[37] Tang, X. H., Non-Nehari manifold method for asymptotically linear Schrödinger equation, J. Aust. Math. Soc., 98, 104-116 (2015) · Zbl 1314.35030
[38] Li, G. B.; Ye, H. Y., Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(R^3\), J. Differential Equations, 257, 566-600 (2014) · Zbl 1290.35051
[39] Dinca, G.; Jebelean, P.; Mawhin, J., Variational and topological methods for Dirichlet problems with p-Laplacian, Port. Math., 58, 339-378 (2001) · Zbl 0991.35023
[40] Drábek, P.; Milota, J., Methods of Nolinear Analysis. Applications to Differential Equations (2007), Birkhäuser: Birkhäuser Basel · Zbl 1176.35002
[41] Drábek, P.; Pohozaev, S. I., Positive solutions for the p-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A, 127, 703-726 (1997) · Zbl 0880.35045
[42] Brown, K. J.; Zhang, Y., The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations, 193, 481-499 (2003) · Zbl 1074.35032
[43] Chabrowski, J.; Costa, D. G., On a class of Schrödinger-type equations with indenite weight functions, Comm. Partial Differential Equations, 33, 1368-1394 (2008) · Zbl 1180.35089
[44] Rabinowitz, P. H., (Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Series Math., vol. 65 (1986), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I) · Zbl 0609.58002
[45] Szulkin, A., Ljusternik-Schnirelmann theory on C1-manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 119-139 (1988) · Zbl 0661.58009
[46] Corvellec, J. N.; Degiovanni, M.; Marzocchi, M., Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal., 1, 151-171 (1993) · Zbl 0789.58021
[47] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.