×

Discrete evolutionary population models: a new approach. (English) Zbl 1442.92106

Summary: In this paper, we apply a new approach to a special class of discrete time evolution models and establish a solid mathematical foundation to analyse them. We propose new single and multi-species evolutionary competition models using the evolutionary game theory that require a more advanced mathematical theory to handle effectively. A key feature of this new approach is to consider the discrete models as non-autonomous difference equations. Using the powerful tools and results developed in our recent work [Discrete Contin. Dyn. Syst., Ser. B 25, No. 3, 903–915 (2020; Zbl 1436.37023)], we embed the non-autonomous difference equations in an autonomous discrete dynamical systems in a higher dimension space, which is the product space of the phase space and the space of the functions defining the non-autonomous system. Our current approach applies to two scenarios. In the first scenario, we assume that the trait equations are decoupled from the equations of the populations. This requires specialized biological and ecological assumptions which we clearly state. In the second scenario, we do not assume decoupling, but rather we assume that the dynamics of the trait is known, such as approaching a positive stable equilibrium point which may apply to a much broader evolutionary dynamics.

MSC:

92D15 Problems related to evolution
92D25 Population dynamics (general)
91A22 Evolutionary games
91A80 Applications of game theory

Citations:

Zbl 1436.37023

References:

[1] An Essay on the Principle of Population, as it Affects the Future Improvement of Society with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers. Thomas Malthus, London, Printed for J. Johnson, in St. Paulos Church-Yard 1798. [Google Scholar]
[2] A.S.Ackleh, J.M.Cushing, and P.L.Salceanu , On the dynamics of evolutionary competition models, Nat. Res. Model. 28 (2015), pp. 380-397. doi: 10.1111/nrm.12074[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1542.92097
[3] A.S.Ackleh, M.D.Hossain, A.Veprauskas, and A.Zhang , Persistence and stability analysis of discrete-time predator-prey models: A study of population and evolutionary dynamics, J. Differ. Equ. Appl. to appear. [Google Scholar] · Zbl 1430.92063
[4] E.C.Balreira, S.Elaydi, and R.Luis , Local stability implies global stability for the planar Ricker competition model, Discr. Contin. Dyn. Syst. B 19(2) (2014), pp. 323-351. [Google Scholar] · Zbl 1282.39016
[5] E.C.Balreira, S.Elaydi, and R.Luis , Global dynamics of triangular maps, Nonlinear Anal. Theory Methods Appl. Ser. A 104 (2014), pp. 75-83. doi: 10.1016/j.na.2014.03.019[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1345.37025
[6] J.Best, C.Castillo-Chavez, and A.Yakubu , Hierarchical competition in discrete-time models with dispersal, Fields Inst. Commun. 36 (2003), pp. 59-72. [Google Scholar] · Zbl 1162.92327
[7] J.S.Brown , Why Darwin would have loved evolutionary game theory, Proc Biol Sci 283(1838) (2016), p. 20160847. doi:10.1098/rspb.2016.0847 . [Crossref], [PubMed], [Web of Science ®], [Google Scholar] · doi:10.1098/rspb.2016.0847
[8] J.M.Cushing , A strong ergodic theorem for some nonlinear matrix models, Nat. Res. Model. 3(3) (1989), pp. 331-357. doi: 10.1111/j.1939-7445.1989.tb00085.x[Crossref], [Google Scholar] · Zbl 0850.92064
[9] J.M.Cushing , An evolutionary Beverton-Holt model, in Theory and Applications of Difference equations and Discrete Dynamical Systems, Z. AlSharawi, J. M. Cushing, and S. Elaydi, eds., Vol. 102, Springer Proceedings in Mathematics & Statistics, 2014, pp. 127-141. [Google Scholar] · Zbl 1317.92062
[10] J.M.Cushing , Difference equations as models of evolutionary dynamics, J. Biol. Dyn. 13(1) (2019), pp. 103-127. doi: 10.1080/17513758.2019.1574034[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1447.92333
[11] J.M.Cushing, S.Levarge, N.Chitnis, and S.M.Henson , Some discrete competition models and the competitive exclusion principle, J. Differ. Equ. Appl. 10(13-15) (2004), pp. 1139-1151. doi: 10.1080/10236190410001652739[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1071.39005
[12] E.D’Aniello and S.Elaydi , The structure of ω-limit sets of asymptotically non-autonomous discrete dynamical systems, Discr. Contin. Dyn. Series B. 2019 (to appear). [Google Scholar] · Zbl 1436.37023
[13] C.Darwin , On the Origin of Species , Harvard University Press, 2001. [Google Scholar]
[14] S.Elaydi , An Introduction to Difference Equations , 3rd ed., Springer, New York, 2005. [Google Scholar] · Zbl 1071.39001
[15] S.Elaydi , Discrete Chaos: Applications in Science and Engineering , 2nd ed., Chapman and Hall/CRC London, 2008. [Google Scholar] · Zbl 1153.39002
[16] S.Elaydi, E.Kwessi, and G.Livadiotis , Hierarchical competition models with the allee effect III: multi-species, J. Biol. Dyn. 12(1) (2018), pp. 271-287. doi: 10.1080/17513758.2018.1439537[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1448.92190
[17] R.A.Fisher , The Genetical Theory of Natural Selection: a Complete Variorum Edition , Oxford University Press, 1930. [Crossref], [Google Scholar] · JFM 56.1106.13
[18] R.A.Fisher , The Genetical Theory of Natural Selection , Clarendon Press, Oxford, 1930. [Crossref], [Google Scholar] · JFM 56.1106.13
[19] S.Henson and J.M.Cushing , Hierarchical models of interspecific competition: Scramble versus contact, J. Math. Biol. 34 (1996), pp. 755-772. doi: 10.1007/BF00161518[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0878.92031
[20] R.Lande , A quantitative genetic theory of life history evolution, Ecology 33 (1982), pp. 607-615. doi: 10.2307/1936778[Crossref], [Web of Science ®], [Google Scholar]
[21] R.Luis, S.Elaydi, and H.Oliveira , Towards a theory of periodic difference equation and population biology, in Dynamics, Games and Science I, M.M. Peixoto, A.A. Pinto, D.A. Rand, eds., Springer Proceedings in Mathematics, 2011, pp. 287-322. [Google Scholar] · Zbl 1250.39011
[22] J.Maynard-Smith , Evolution and the Theory of Games , Cambridge University Press, Cambridge, MA, 1982. [Crossref], [Google Scholar] · Zbl 0526.90102
[23] J.Maynard Smith and G.R.Price , The logic of animal conflicts, Nature 246 (1973), pp. 15-18. doi: 10.1038/246015a0[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1369.92134
[24] B.J.McGill and J.S.Brown , Evolutionary game theory and adaptive dynamics of continuous traits, Ann. Rev. Ecol. Evol. Syst. 38 (2007), pp. 403-435. doi: 10.1146/annurev.ecolsys.36.091704.175517[Crossref], [Web of Science ®], [Google Scholar]
[25] J.Nash , Equilibrium points in n-person games, Proc. Natl Acad. Sci. USA 36(1) (1950), pp. 48-49. doi: 10.1073/pnas.36.1.48[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0036.01104
[26] M.Nowak , Evolutionary Dynamics: Exploring the Equations of Life , The Belknap Press of Harvard University Press, Cambridge, 2006. [Crossref], [Google Scholar] · Zbl 1115.92047
[27] D.Roff , Evolution of Life Histories: Theory and Analysis , Chapman and Hall, New York, 1992. [Google Scholar]
[28] B.Ryals and R.J.Sacker , Global stability in the 2-D Ricker equations, J. Differ. Equ. Appl. 21(11) (2015), pp. 1068-1081. doi: 10.1080/10236198.2015.1065825[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1341.39006
[29] H.Smith , Planar competitive and cooperative difference equations, J. Differ. Equ. Appl. 3(5-6) (1998), pp. 335-357. doi: 10.1080/10236199708808108[Taylor & Francis Online], [Google Scholar] · Zbl 0907.39004
[30] S.Stearns , The Evolution of Life Histories , Oxford University Press, Oxford, 2004. [Google Scholar]
[31] T.L.Vincent and J.S.Brown , Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics , Cambridge University Press, Cambridge, 2005. [Crossref], [Google Scholar] · Zbl 1140.91015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.