×

A variably distributed-order time-fractional diffusion equation: analysis and approximation. (English) Zbl 1442.76074

Summary: We prove the wellposedness and smoothing properties of the initial-boundary value problem of a variably distributed-order time-fractional diffusion partial differential equation in multiple space dimensions, which models the subdiffusive transport of solutes traveling through heterogeneous porous media. We accordingly derive a finite element approximation to the problem and prove its optimal-order error estimate, only under the regularity assumptions of the variably distributed order, coefficients and the source term, but without any regularity assumption on the true solution of the problem. Numerical experiments are presented to verify the mathematical and numerical analyses.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Meerschaert, M. M.; Sikorskii, A., (Stochastic Models for Fractional Calculus. Stochastic Models for Fractional Calculus, De Gruyter Studies in Mathematics (2011)) · Zbl 1490.60004
[2] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[3] Øksendal, B., Stochastic Differential Equations: An Introduction with Applications (2010), Springer: Springer Heidelberg
[4] Bear, J., Some experiments on dispersion, J. Geophys. Res., 66, 2455-2467 (1961)
[5] Bear, J., Dynamics of Fluids in Porous Media (1972), Elsevier: Elsevier New York · Zbl 1191.76001
[6] Benson, D.; Schumer, R.; Meerschaert, M. M.; Wheatcraft, S. W., Fractional dispersion, Lévy motions, and the MADE tracer tests, Transp. Porous Media, 42, 211-240 (2001)
[7] Goodfellow, I.; Bengio, Y.; Courville, A., Deep Learning (2016), The MIT Press: The MIT Press Cambrige, Massachusettes · Zbl 1373.68009
[8] Schumer, R.; Benson, D. A.; Meerschaert, M. M.; Baeumer, B., Fractal mobile/immobile solute transport, Water Resour. Res., 39, 1-12 (2003)
[9] Podlubny, I., Fractional Differential Equations (1999), Academic Press · Zbl 0918.34010
[10] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach London · Zbl 0818.26003
[11] Chen, H.; Wang, H., Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation, J. Comput. Appl. Math., 296, 480-498 (2016) · Zbl 1342.65168
[12] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[13] Ervin, V. J., Regularity of the solution to fractional diffusion, advection, reaction equations (2019), arXiv preprint arXiv:1911.03261
[14] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Differ. Equ. Int. J., 22, 558-576 (2006) · Zbl 1095.65118
[15] Ervin, V. J.; Heuer, N.; Roop, J., Regularity of the solution to 1-D fractional order diffusion equations, Math. Comp., 87, 2273-2294 (2018) · Zbl 1394.65145
[16] Garrappa, R.; Moret, I.; Popolizio, M., On the time-fractional Schrödinger equation: Theoretical analysis and numerical solution by matrix Mittag-Leffler functions, Comput. Math. Appl., 74, 977-992 (2017) · Zbl 1448.65099
[17] Jia, J.; Wang, H., A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78, 1345-1356 (2019) · Zbl 1442.65197
[18] Jia, J.; Wang, H., A fast finite volume method on locally refined meshes for fractional diffusion equations, East Asian J. Appl. Math., 9, 755-779 (2019) · Zbl 1465.65086
[19] Jia, L.; Chen, H.; Wang, H., Mixed-type Galerkin variational principle and numerical simulation for a generalized nonlocal elastic model, J. Sci. Comput., 71, 660-681 (2017) · Zbl 1456.65161
[20] Jin, B.; Li, B.; Zhou, Z., Subdiffusion with a time-dependent coefficient: Analysis and numerical solution, Math. Comp., 88, 2157-2186 (2019) · Zbl 1417.65205
[21] Kopteva, N.; Stynes, M., Analysis and numerical solution of a Riemann-Liouville fractional derivative two-point boundary value problem, Adv. Comput. Math., 43, 77-99 (2017) · Zbl 1381.65057
[22] Le, K.; McLean, W.; Mustapha, K., Numerical solution of the time-fractional Fokker-Planck equation with general forcing, SIAM J. Numer. Anal., 54, 1763-1784 (2016) · Zbl 1404.65122
[23] Liao, H.; McLean, W.; Zhang, J., A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J. Numer. Anal., 56, 1112-1133 (2018) · Zbl 1447.65026
[24] Lin, Y.; Xu, C., Finite difference/spectral approximation for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[25] Lubich, C., Convolution quadrature and discretized operational calculus. I, Numer. Math., 52, 129-145 (1988) · Zbl 0637.65016
[26] Lubich, C.; Schädle, A., Fast convolution for nonreflecting boundary conditions, SIAM J. Sci. Comput., 24, 161-182 (2002) · Zbl 1013.65113
[27] Luchko, Y., Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15, 141-160 (2012) · Zbl 1276.26018
[28] Jin, B.; Li, B.; Zhou, Z., An analysis of the Crank-Nicolson method for subdiffusion, IMA J. Numer. Anal., 38, 518-541 (2017) · Zbl 1497.65175
[29] McLean, W., Regularity of solutions to a time-fractional diffusion equation, ANZIAM J., 52, 123-138 (2010) · Zbl 1228.35266
[30] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382, 426-447 (2011) · Zbl 1219.35367
[31] Stynes, M.; O’Riordan, E.; Gracia, J. L., Error analysis of a finite difference method on graded mesh for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55, 1057-1079 (2017) · Zbl 1362.65089
[32] Zhang, Y.; Green, C.; Baeumer, B., Linking aquifer spatial properties and non-Fickian transport in mobile-immobile like alluvial settings, J. Hydrol., 512, 315-331 (2014)
[33] Chepizhko, O.; Peruani, F., Diffusion, subdiffusion, and trapping of active particles in heterogeneous media, Phys. Rev. Lett., 111, 1-5 (2013)
[34] Javadpour, F.; Fisher, D.; Unsworth, M., Nanoscale gas flow in shale gas sediments, J. Can. Pet. Technol., 46, 55-61 (2007)
[35] Zhokh, A.; Strizhak, P., Non-Fickian diffusion of methanol in mesoporous media: geometrical restrictions or adsorption-induced?, J. Chem. Phys., 146, Article 124704 pp. (2017)
[36] Diethelm, K.; Ford, N. J., Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225, 96-104 (2009) · Zbl 1159.65103
[37] Mainardi, F.; Pagnini, G.; Gorenflo, R., Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput., 187, 295-305 (2007) · Zbl 1122.26004
[38] Gandossi, L.; Von Estorff, U., An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas ProductionScientific and Technical Research Reports (2015), Joint Research Centre of the European Commission; Publications Office of the European Union
[39] King, G. E., Hydraulic Fracturing, Vol. 101SPE 152596 (2012), Society of Petroleum Engineers
[40] Evans, L. C., (Partial Differential Equations. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19 (1998), American Mathematical Society: American Mathematical Society Rhode Island) · Zbl 0902.35002
[41] Adams, R. A.; Fournier, J. J.F., Sobolev Spaces (2003), Elsevier: Elsevier San Diego · Zbl 1098.46001
[42] Wheeler, M. F., A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759 (1973) · Zbl 0232.35060
[43] Wang, H.; Shi, X.; Ewing, R. E., An ELLAM scheme for multidimensional advection-reaction equations and its optimal-order error estimate, SIAM J. Numer. Anal., 38, 1846-1885 (2001) · Zbl 1006.76074
[44] Chechkin, A.; Klafter, J.; Sokolov, I. M., Fractional fokker-Planck equation for ultraslow kinetics, Europhys. Lett., 63, 326-332 (2003)
[45] Denisov, S. I.; Kantz, H., Continuous-time random walk theory of superslow diffusion, Europhys. Lett., 92, 30001 (2010)
[46] Lorenzo, C. F.; Hartley, T. T., Variable order and distributed order fractional operators, Nonlinear Dyn., 29, 57-98 (2002) · Zbl 1018.93007
[47] Sandov, T.; Iomin, A.; Kantz, H.; Metzler, R.; Chechkin, A., Comb model with slow and untraslow diffusion (2016), arXiv:1512.07781 [cond-mat.stat-mech] · Zbl 1386.60287
[48] Varghaei, P.; Kharazmi, E.; Suzuki, J. L.; Zayernouri, M., Vibration analysis of geometrically nonlinear and fractional viscoelastic cantilever beams (2019)
[49] Wang, H.; Zheng, X., Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475, 1778-1802 (2019) · Zbl 1516.35477
[50] Zheng, X.; Wang, H., An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58, 330-352 (2020) · Zbl 1429.65168
[51] Wang, H.; Zheng, X., Analysis and numerical solution of a nonlinear variable-order fractional differential equation, Adv. Comput. Math., 45, 2647-2675 (2019)
[52] Zheng, X.; Wang, H., Finite element approximations to variable-order time-fractional diffusion equations and their analysis without regularity assumptions of the solutions, IMA J. Numer. Anal. (2020)
[53] Ye, H.; Gao, J.; Ding, Y., A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328, 1075-1081 (2007) · Zbl 1120.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.