×

Estimation of two error components in the numerical solution to the problem of nonisothermal flow of polymer fluid between two coaxial cylinders. (English. Russian original) Zbl 1442.76013

Comput. Math. Math. Phys. 58, No. 7, 1099-1115 (2018); translation from Zh. Vychisl. Mat. Mat. Fiz. 58, No. 7 (2018).
Summary: An algorithm for solving a stationary nonlinear problem of a nonisothermal flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders is developed on the basis of Chebyshev approximations and the collocation method. In test calculations, the absence of saturation of the algorithm is shown. A posteriori estimates of two error components in the numerical solution – the error of approximation method and the round-off error – are obtained. The behavior of these components as a function of the number of nodes in the spatial grid of the algorithm and the radius of the inner cylinder is analyzed. The calculations show exponential convergence, stability to rounding errors, and high time efficiency of the algorithm developed.

MSC:

76A10 Viscoelastic fluids
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Qin, H., Yi, cal, J. dong, and Y.-S. Lee, “direct printing of capacitive touch sensors on flexible substrates by additive e-jet printing with silver nanoinks, J. Manufact. Sci. Eng., 139, 1-7, (2017)
[2] V. I. Tuev, N. D. Malyutin, A. G. Loshchilov, et al., “Application of the additive printer (plotter) technology in electronics to form films from organic and inorganic materials,” Dokl. Tomsk. Univ. Sist. Upr. Radioelekyton., No. 4, 52-63 (2015).
[3] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed. (Springer, Berlin, 2010). · doi:10.1007/978-90-481-2231-8
[4] Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymer Systems (AltGPA, Barnaul, 2012) [in Russian].
[5] A. M. Blokhin and A. S. Rudometova, “Stationary solutions of the equations for nonisothermal electroconvection of a weakly conducting incompressible polymeric liquid,” J. Appl. Ind. Math. 9 (2), 147-156 (2015). · Zbl 1340.76004
[6] Blokhin, A. M.; Yegitov, A. V.; Tkachev, D. L., Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel, Comput. Math. Math. Phys., 55, 848-873, (2015) · Zbl 1426.76153 · doi:10.1134/S0965542515050073
[7] Blokhin, A. M.; Kruglova, E. A.; Semisalov, B. V., Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders, Comput. Math. Math. Phys., 57, 1181-1193, (2017) · Zbl 1457.76030 · doi:10.1134/S0965542517070053
[8] Blokhin, A. M.; Semisalov, B. V.; Shevchenko, A. S., Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid, Mat. Model., 28, 3-22, (2016) · Zbl 1374.76058
[9] A. M. Blokhin and B. V. Semisalov, “A stationary flow of an incompressible viscoelastic fluid in a channel with elliptic cross section,” J. Appl. Ind. Math. 9 (1), 18-26 (2015).
[10] K. I. Babenko, Fundamentals of Numerical Analysis (Fizmatlit, Moscow, 1986) [in Russian].
[11] Semisalov, B. V., A fast nonlocal algorithm for solving Neumann-Dirichlet boundary value problems with error control, Vychisl. Metody Program., 17, 500-522, (2016)
[12] V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials (Nauka, Moscow, 1977) [in Russian]. · Zbl 0481.41001
[13] N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods, 6th ed. (BINOM, Moscow, 2008) [in Russian]. · Zbl 0638.65001
[14] L. N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013). · Zbl 1264.41001
[15] Rump, S. M., Verification methods: rigorous results using floating-point arithmetic, Acta Numerica, 19, 287-449, (2010) · Zbl 1323.65046 · doi:10.1017/S096249291000005X
[16] G. Alefeld and J. Herzberger, Introduction to Interval Computations (Academic, New York, 1983). · Zbl 0552.65041
[17] S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin, Guaranteed Accuracy in Numerical Linear Algebra (Springer, Netherlands, 1993). · Zbl 0793.65014
[18] E. A. Biberdorf and N. I. Popova, Guaranteed Accuracy of Modern Linear Algebra Algorithms (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2006) [in Russian].
[19] J. W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997). · Zbl 0879.65017 · doi:10.1137/1.9781611971446
[20] V. A. Trenogin, Functional Analysis (Nauka, Moscow, 1980) [in Russian]. · Zbl 0517.46001
[21] A. Yu. Gornov, Computational Techniques for Solving Optimal Control Problems (Nauka, Novosibirsk, 2009) [in Russian].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.