Skip to main content
Log in

Estimation of Two Error Components in the Numerical Solution to the Problem of Nonisothermal Flow of Polymer Fluid between Two Coaxial Cylinders

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An algorithm for solving a stationary nonlinear problem of a nonisothermal flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders is developed on the basis of Chebyshev approximations and the collocation method. In test calculations, the absence of saturation of the algorithm is shown. A posteriori estimates of two error components in the numerical solution—the error of approximation method and the round-off error—are obtained. The behavior of these components as a function of the number of nodes in the spatial grid of the algorithm and the radius of the inner cylinder is analyzed. The calculations show exponential convergence, stability to rounding errors, and high time efficiency of the algorithm developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. A pole, a removable or an essential singularity.

REFERENCES

  1. H. Qin, Yi, Cal, J. Dong, and Y.-S. Lee, “Direct printing of capacitive touch sensors on flexible substrates by additive e-jet printing with silver nanoinks,” J. Manufact. Sci. Eng. 139 (031011), 1–7 (2017).

    Google Scholar 

  2. V. I. Tuev, N. D. Malyutin, A. G. Loshchilov, et al., “Application of the additive printer (plotter) technology in electronics to form films from organic and inorganic materials,” Dokl. Tomsk. Univ. Sist. Upr. Radioelekyton., No. 4, 52–63 (2015).

  3. V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, 2nd ed. (Springer, Berlin, 2010).

    Book  Google Scholar 

  4. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Fluid Polymer Systems (AltGPA, Barnaul, 2012) [in Russian].

  5. A. M. Blokhin and A. S. Rudometova, “Stationary solutions of the equations for nonisothermal electroconvection of a weakly conducting incompressible polymeric liquid,” J. Appl. Ind. Math. 9 (2), 147–156 (2015).

  6. A. M. Blokhin, A. V. Yegitov, and D. L. Tkachev, “Linear instability of solutions in a mathematical model describing polymer flows in an infinite channel,” Comput. Math. Math. Phys. 55 (5), 848–873 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. M. Blokhin, E. A. Kruglova, and B. V. Semisalov, “Steady-state flow of an incompressible viscoelastic polymer fluid between two coaxial cylinders,” Comput. Math. Math. Phys. 57 (7), 1181–1193 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Blokhin, B. V. Semisalov, and A. S. Shevchenko, “Stationary solutions of equations describing the nonisothermal flow of an incompressible viscoelastic polymeric fluid,” Mat. Model. 28 (10), 3–22 (2016).

    MathSciNet  MATH  Google Scholar 

  9. A. M. Blokhin and B. V. Semisalov, “A stationary flow of an incompressible viscoelastic fluid in a channel with elliptic cross section,” J. Appl. Ind. Math. 9 (1), 18–26 (2015).

  10. K. I. Babenko, Fundamentals of Numerical Analysis (Fizmatlit, Moscow, 1986) [in Russian].

    Google Scholar 

  11. B. V. Semisalov, “A fast nonlocal algorithm for solving Neumann–Dirichlet boundary value problems with error control,” Vychisl. Metody Program. 17 (4), 500–522 (2016).

    Google Scholar 

  12. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  13. N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods, 6th ed. (BINOM, Moscow, 2008) [in Russian].

    MATH  Google Scholar 

  14. L. N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013).

    MATH  Google Scholar 

  15. S. M. Rump, “Verification methods: Rigorous results using floating-point arithmetic,” Acta Numerica 19, 287–449 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Alefeld and J. Herzberger, Introduction to Interval Computations (Academic, New York, 1983).

    MATH  Google Scholar 

  17. S. K. Godunov, A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin, Guaranteed Accuracy in Numerical Linear Algebra (Springer, Netherlands, 1993).

  18. E. A. Biberdorf and N. I. Popova, Guaranteed Accuracy of Modern Linear Algebra Algorithms (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  19. J. W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, PA, 1997).

    Book  MATH  Google Scholar 

  20. V. A. Trenogin, Functional Analysis (Nauka, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  21. A. Yu. Gornov, Computational Techniques for Solving Optimal Control Problems (Nauka, Novosibirsk, 2009) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Blokhin, E. A. Kruglova or B. V. Semisalov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Kruglova, E.A. & Semisalov, B.V. Estimation of Two Error Components in the Numerical Solution to the Problem of Nonisothermal Flow of Polymer Fluid between Two Coaxial Cylinders. Comput. Math. and Math. Phys. 58, 1099–1115 (2018). https://doi.org/10.1134/S0965542518070035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542518070035

Keywords:

Navigation