×

Spectral collocation methods for nonlinear coupled time fractional Nernst-Planck equations in two dimensions and its convergence analysis. (English) Zbl 1442.65300

Summary: In this paper, a nonlinear coupled time fractional Nernst-Planck equation in two dimensions space is considered. Using properties of the Caputo fractional derivative and Riemann-Liouville fractional integral, the time fractional Nernst-Planck problem is transformed into a Volterra integral model with singular kernel equivalently. We propose a novelty spectral collocation method in time and space with a spectral expansion of Jacobi interpolation polynomial to discretize the model. We also derive the optimal rate of convergence of this method. Numerical results are presented to verify efficiency of collocation methods and spectral accuracy theory.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Li, X. J.; Xu, C. J., A finite difference/spectral element method for the fractional Nernst-Planck equation, Chinese J. Eng. Math., 27, 207-218 (2010) · Zbl 1224.65232
[2] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132-138 (2000)
[3] Zhao, Y.; Zhang, Y.; Liu, F., Convergence and superconvergence of a fully-discrete scheme for multiterm time fractional diffusion equations, J. Comput. Appl. Math., 73, 1087-1099 (2017) · Zbl 1412.65159
[4] Shen, J.; Tang, T.; Wang, L., Spectral Methods (2011), Springer · Zbl 1227.65117
[5] Shen, J.; Tang, T., Spectral and High-order Methods with Application (2006), Science press: Science press Beijing · Zbl 1234.65005
[6] Gou, B. Y.; Wang, L. L., Jacobi interpolation approximations and their application to singular differential equations, Adv. Comput. Math., 14, 227-276 (2001) · Zbl 0984.41004
[7] Xiang, X. M., Numerical Analysis of Spectral Methods (2000), Science Press: Science Press beijing
[8] Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52, 272-2294 (2014) · Zbl 1310.65126
[9] Zhuang, P.; Liu, F.; Turner, I.; Anh, V., Galerkin finite element method and error analysis for the fractional cable equation, Numer. Algorithms, 72, 447-466 (2016) · Zbl 1343.65125
[10] Zhao, Y.; Chen, P.; Bu, W., Two mixed finite element methods for time-fractional diffusion equations, J. Comput. Sci., 70, 407-428 (2017) · Zbl 1360.65245
[11] Zhao, Y. M.; Zhang, Y. D.; Liu, F., Analytical solution and nonconforming finite element approximation for the 2D multiterm fractional subdiffusion equation, J. Comput. Appl. Math., 40, 8810-8825 (2016) · Zbl 1471.65156
[12] Jiang, Y. J., A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, J. Comput. Appl. Math., 39, 1163-1171 (2015) · Zbl 1432.65122
[13] Guo, B. L.; Pu, X. K.; Huang, F. H., Fractional Partial Differential Equations and Their Numerical Solutions (2011), Science Press: Science Press Beijing
[14] Ervin, V. J.; Roop, J. P., Variztional formulation for the stationary fractional advection dispersion equation, Numer. Meth. P. D. E., 22, 558-576 (2005) · Zbl 1095.65118
[15] Yang, Y.; Chen, Y. P.; Huang, Y. Q., Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential eduations, Acta. Math. Sci., 34, 673-690 (2014) · Zbl 1313.65343
[16] Yang, Y., Jacobi spectral Galerkin methods for fractional integro-differential equations, Calcolo, 52, 519-542 (2015) · Zbl 1331.65179
[17] Yang, Y.; Chen, Y. P.; Huang, Y. Q.; Yang, W., Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integral Equations, Adv. Appl. Math. Mech., 7, 74-88 (2015) · Zbl 1488.65764
[18] Lin, Y. M.; Xu, C. J., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phy., 225, 1533-1552 (2007) · Zbl 1126.65121
[19] Yang, Y.; Chen, Y. P.; Huang, Y. Q.; Wei, H. Y., Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73, 1218-1232 (2017) · Zbl 1412.65168
[20] Yang, Y.; Huang, Y. Q.; Zhou, Y., Numerical simulation of time fractional Cable equations and convergence analysis, Numer. Meth. P. D. E., 34, 1556-1576 (2018) · Zbl 1407.65233
[21] Yang, Y.; Huang, Y. Q.; Zhou, Y., Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods, J. Comput. Appl. Math., 339, 389-404 (2018) · Zbl 1393.65037
[22] Qian, N.; Sejnowski, T., An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons, Biol. Cybernet., 62, 1-15 (1989) · Zbl 0683.92004
[23] Samson, E.; Marchand, J., Numerical solution of the extended Nernst Planck model, J. Colloid Interf. Sci., 215, 1-8 (1999)
[24] Diethelm, K., The Analysis of Fractional Differential Equations (2004), Springer: Springer Berlin Heidelberg
[25] Mastroianni, G.; Occorsio, D., Optimal systems of nodes for Lagrange interpolation on bounded intervals, J. Comput. Appl. Math., 134, 325-341 (2001) · Zbl 0990.41003
[26] Nevai, P., Mean convergence of Lagrange interpolation, III, Trans. Amer. Math. Soc., 282, 669-698 (1984) · Zbl 0577.41001
[27] Ragozin, D. L., Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc., 162, 157-170 (1971) · Zbl 0234.41011
[28] Canuto, C.; Hussaini, M. Y.; Quarteroni, A., Spectral Methods Funda-mentals in Single Domains (2006), Springer-Verlag · Zbl 1093.76002
[29] Colton, D.; Kress, R., Inverse acoustic and electromagnetic scattering theory, Appl. Math. Sci., 93, 67-110 (1998) · Zbl 0893.35138
[30] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1989), Springer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.