×

Numerical solutions for solving time fractional Fokker-Planck equations based on spectral collocation methods. (English) Zbl 1393.65037

Summary: In this paper, we consider the numerical solution of the time fractional Fokker-Planck equation. We propose a spectral collocation method in both temporal and spatial discretizations with a spectral expansion of Jacobi interpolation polynomial for this equation. The convergence of the method is rigorously established. Numerical tests are carried out to confirm the theoretical results.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R35 Free boundary problems for PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
35Q84 Fokker-Planck equations
35R11 Fractional partial differential equations

Software:

FODE
Full Text: DOI

References:

[1] Atangana, A.; Baleanu, D., New fractional derivatives with non-local and non-singular Kernel: Theory and application to heat transfer model, Therm. Sci., 20, 2, 763-769 (2016)
[2] Atangana, A.; Koca, I., Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fractals, 89, 447-454 (2016) · Zbl 1360.34150
[3] Atangana, A., Derivative with two fractional orders: A new avenue of investigation toward revolution in fractional calculus, Atangana, A. Eur. Phys. J. Plus, 131, 373 (2016)
[4] Chen, S.; Liu, F.; Zhuang, P.; Anh, V., Finite difference approximations for fractional Fokker-Planck equation, Applied Mathematical Modelling, 33, 1, 256-273 (2009) · Zbl 1167.65419
[5] Liu, F.; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker.Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[6] Jiang, Y., A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model., 39, 1163-1171 (2015) · Zbl 1432.65122
[7] Zhao, T.; Xuan, H., Error analysis of spectral method for the space and time fractional Fokker-Planck equation, Recent Adv. Appl. Nonlinear Dyn. Numer. Anal., 15, 83-104 (2013) · Zbl 1320.82060
[8] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Numerical treatment for the fractional Fokker-Planck equation, ANZIAM J., 48, 759-774 (2007) · Zbl 1334.82048
[9] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 1, 204-226 (2008) · Zbl 1416.65344
[10] Vong, S.; Wang, Z., A high order compact finite difference scheme for time fractional Fokker-Planck equations, Appl. Math. Lett., 43, 38-43 (2015) · Zbl 1316.82023
[11] Deng, W., Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227, 1510-1522 (2007) · Zbl 1388.35095
[12] Yang, Q.; Liu, F.; Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 34, 200-218 (2010) · Zbl 1185.65200
[13] Aminataei, A.; Vanani, S. K., Numerical solution of fractional FOKKER-PLANCK equation using the operational collocation method, Appl. Comput. Math., 12, 1, 33-43 (2013) · Zbl 1290.26003
[14] Chen, Y.; Gu, Z., Legendre spectral-collocation method for Volterra integral differential equations with non-vanishing delay, Commun. Appl. Math. Comput. Sci., 8, 1, 67-98 (2013) · Zbl 1284.65189
[15] Zheng, M.; Liu, F.; Turner, I.; Anh, V., Methods and algorithms for scientific computing a novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J. Sci. Comput., 37, 2, 701-724 (2015) · Zbl 1320.82052
[16] Yang, Y.; Chen, Y. P.; Huang, Y. Q.; Yang, W., Convergence analysis of Legendre-collocation methods for nonlinear Volterra type integral equations, Adv. Appl. Math. Mech., 7, 1, 74-88 (2015) · Zbl 1488.65764
[17] Yang, Y.; Chen, Y., Spectral collocation methods for nonlinear Volterra integro-differential equations with weakly singular Kernels, Bull. Malays. Math. Sci. Soc. (2017)
[18] Yang, Y.; Chen, Y.; Huang, Y., Spectral-collocation method for fractional Fredholm integro-differential equations, J. Korean Math. Soc., 51, 1, 203-224 (2014) · Zbl 1284.65193
[19] Yang, Y.; Chen, Y. P.; Huang, Y. Q., Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci., 34B, 3, 673-690 (2014) · Zbl 1313.65343
[20] Yang, Y.; Chen, Y.; Huang, Y.; Wei, H., Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput. Math. Appl., 73, 6, 1218-1232 (2017) · Zbl 1412.65168
[21] Yang, Y., Jacobi spectral Galerkin methods for Volterra integral equations with weakly singular Kernel, Bull. Korean Math. Soc., 53, 1, 247-262 (2016) · Zbl 1341.65053
[22] Yang, Y., Jacobi spectral Galerkin methods for fractional integro-differential equations, Calcolo, 52, 4, 519-542 (2015) · Zbl 1331.65179
[23] Canuto, C.; Hussaini, M. Y.; Quarteroni, A., Spectral Methods Funda-mentals in Single Domains (2006), Springer-Verlag · Zbl 1093.76002
[24] Nevai, P., Mean convergence of Lagrange interpolation: III, Trans. Amer. Math. Soc., 282, 669-698 (1984) · Zbl 0577.41001
[25] Mastroianni, G.; Occorsto, D., Optimal systems of nodes for Lagrange interpolation on bounded intervals: asurvey, J. Comput. Appl. Math., 134, 325-341 (2001) · Zbl 0990.41003
[26] Henry, D., Geometric Theory of Semilinear Parabolic Equations (1989), Springer-Verlag
[27] Ragozin, D. L., Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc., 150, 41-53 (1970) · Zbl 0208.14701
[28] Ragozin, D. L., Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc., 162, 157-170 (1971) · Zbl 0234.41011
[29] Colton, D.; Kress, R., Inverse Coustic and Electromagnetic Scattering Theory, Applied Mathematical Sciences (1998), Springer-Verlag: Springer-Verlag Heidelberg · Zbl 0893.35138
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.