×

The horofunction boundary of the infinite dimensional hyperbolic space. (English) Zbl 1442.51005

Let \((H , \langle, \cdot,\rangle)\) be an infinite-dimensional Hilbert space and let \(V = {\mathbb R}\oplus H\). The point set of Klein’s model of the infinite-dimensional real hyperbolic space \({\mathbb H}^{\infty}\) consists of all \((1, x)\in V\) with \(\|x\|<1\), equipped with Hilbert’s cross-ratio metric. In this paper, the author determines the horofunctions of \({\mathbb H}^{\infty}\) as well as the Busemann points among them.

MSC:

51M10 Hyperbolic and elliptic geometries (general) and generalizations
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces

References:

[1] Beardon, AF, The dynamics of contractions, Ergod. Theory Dyn. Syst., 17, 6, 1257-1266 (1997) · Zbl 0952.54023 · doi:10.1017/S0143385797086434
[2] Birkhoff, G., Extensions of Jentzsch’s theorem, Trans. Am. Math. Soc., 85, 219-227 (1957) · Zbl 0079.13502
[3] Bridson, MR; Haefliger, A., Metric Spaces of Non-positive Curvature. Grundleren der Mathematischen Wissenschaften (1999), Berlin: Springer, Berlin · Zbl 0988.53001
[4] Bushell, PJ, Hilbert’s metric and positive contraction mappings in Banach spaces, Arch. Ration. Mech. Anal., 52, 330-338 (1973) · Zbl 0275.46006 · doi:10.1007/BF00247467
[5] Burger, M.; Iozziand, A.; Monod, N., Equivariant embeddings of trees into hyperbolic spaces, Int. Math. Res. Not., 22, 1331-1369 (2005) · Zbl 1077.22005 · doi:10.1155/IMRN.2005.1331
[6] Das, T.; Stratmann, BO; Urbański, M., The Bishop-Jones relation and Hausdorff geometry of convex-cobounded limit sets in infinite-dimensional hyperbolic space, Stoch. Dyn., 16, 5, 1650018 (2016) · Zbl 1345.37048 · doi:10.1142/S0219493716500180
[7] Gaubert, S.; Vigeral, G., A maximin characterisation of the escape rate of non- expansive mappings in metrically convex spaces, Math. Proc. Camb. Philos. Soc., 152, 2, 341-363 (2012) · Zbl 1255.47053 · doi:10.1017/S0305004111000673
[8] Gouëzel, S., Karlsson, A.: Subadditive and multiplicative ergodic theorems. J. Eur. Math. Soc. (to appear) · Zbl 1440.37006
[9] Gromov, M., Asymptotic Invariants of Infinite Groups. Geometric Group Theory. Volume 2 of London Mathematical Society. Lecture Notes in Series (1993), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 0864.13001
[10] Gutiérrez, AW, The horofunction boundary of finite-dimensional \(\ell_p\) spaces, Colloq. Math., 155, 51-65 (2019) · Zbl 1415.51015 · doi:10.4064/cm7320-3-2018
[11] Gutiérrez, A., On the metric compactification of infinite-dimensional \({\ell }_p\) spaces, Can. Math. Bull., 62, 491-507 (2019) · Zbl 1435.54009 · doi:10.4153/S0008439518000681
[12] Gutiérrez, A.: The Metric Compactification of \(L_p\) Represented by Random Measures. arXiv:1903.02502 · Zbl 1451.54005
[13] Karlsson, A., Nonexpanding maps and Busemann functions, Ergod. Theory Dyn. Syst., 21, 5, 1447-1457 (2001) · Zbl 1072.37028 · doi:10.1017/S0143385701001699
[14] Karlsson, A., Two extensions of Thurston’s spectral theorem for surface diffeomorphisms, Bull. Lond. Math. Soc., 46, 2, 217-226 (2014) · Zbl 1311.37035 · doi:10.1112/blms/bdt086
[15] Karlsson, A.: Elements of a Metric Spectral Theory (2019). arXiv:1904.01398
[16] Lemmens, B.; Lins, B.; Nussbaum, R.; Wortel, M., Denjoy-Wolff theorems for Hilbert’s and Thompson’s metric spaces, J. Anal. Math., 134, 2, 671-718 (2018) · Zbl 06946531 · doi:10.1007/s11854-018-0022-2
[17] Lemmens, B.; Nussbaum, R., Nonlinear Perron-Frobenius Theory. Cambridge Tracts in Mathematics (2012), Cambridge: Cambridge Univ. Press, Cambridge · Zbl 1246.47001
[18] Lemmens, B.; Nussbaum, R.; Papadopoulos, A.; Troyanov, M., Birkhoff’s version of Hilbert’s metric and its applications in analysis, Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, 275-303 (2014), Zürich: European Mathematical Society, Zürich · Zbl 1310.51001
[19] Lemmens, B.; Roelands, M.; Wortel, M., Hilbert and Thompson isometries on cones in JB-algebras, Math. Z., 292, 1511-1547 (2019) · Zbl 1430.58004 · doi:10.1007/s00209-018-2144-8
[20] Lemmens, B.; Walsh, C., Isometries of polyhedral Hilbert geometries, J. Topol. Anal., 3, 2, 213-241 (2011) · Zbl 1220.53090 · doi:10.1142/S1793525311000520
[21] Monod, N., Superrigidity for irreducible lattices and geometric splitting, J. Am. Math. Soc., 19, 4, 781-814 (2006) · Zbl 1105.22006 · doi:10.1090/S0894-0347-06-00525-X
[22] Monod, N.; Py, P., An exotic deformation of the hyperbolic space, Am. J. Math., 136, 5, 1249-1299 (2014) · Zbl 1304.53030 · doi:10.1353/ajm.2014.0036
[23] Munkres, JR, Topology (2000), Upper Saddle River: Prentice-Hall inc., Upper Saddle River · Zbl 0951.54001
[24] Rieffel, MA, Group \(C^*\)-algebras as compact quantum metric spaces, Doc. Math., 7, 605-651 (2002) · Zbl 1031.46082
[25] Satake, I., On representations and compactifications of symmetric Riemannian spaces, Ann. Math. (2), 71, 1, 77-110 (1960) · Zbl 0094.34603 · doi:10.2307/1969880
[26] Walsh, C., The horofunction boundary of finite-dimensional normed spaces, Math. Proc. Camb. Philos. Soc., 142, 3, 497-507 (2007) · Zbl 1163.53048 · doi:10.1017/S0305004107000096
[27] Walsh, C., The horofunction boundary of the Hilbert geometry, Adv. Geom., 8, 4, 503-529 (2008) · Zbl 1155.53335 · doi:10.1515/ADVGEOM.2008.032
[28] Walsh, C.; Papadopoulos, A.; Troyanov, M., The horofunction boundary and isometry group of the Hilbert geometry, Handbook of Hilbert Geometry. IRMA Lectures in Mathematics and Theoretical Physics, 127-146 (2014), Zürich: European Mathematical Society, Zürich · Zbl 1310.51001
[29] Walsh, C., Gauge-reversing maps on cones, and Hilbert and Thompson isometries, Geom. Topol., 22, 1, 55-104 (2018) · Zbl 1398.53050 · doi:10.2140/gt.2018.22.55
[30] Walsh, C., The asymptotic geometry of the Teichmüller metric, Geom. Dedicata, 200, 115-152 (2019) · Zbl 1419.30029 · doi:10.1007/s10711-018-0364-z
[31] Walsh, C., Hilbert and Thompson geometries isometric to infinite dimensional Banach spaces, Ann. Inst. Fourier (Grenoble), 68, 5, 1831-1877 (2018) · Zbl 1417.46004 · doi:10.5802/aif.3198
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.