×

The regularity of minima for the Dirichlet problem on BD. (English) Zbl 1442.49048

Many physically relevant variational problems describing the displacements of bodies subject to external forces are posed in the space BD of functions of bounded deformation. The space of BD displays the natural function space for a large class of variational integrals. In this paper, a regularity theory is developed from a Sobolev regularity and partial Hölder continuity perspective for minima of such functionals with linear growth, which essentially yields the same results known for the Dirichlet problems on BV of functions of bounded variations.
The generalised minima of the variational prolem are given as \[ \text{minimize } F[v]: = \int_\Omega f((\epsilon(v))dx, \quad \text{over } v \in{\mathcal D}_{u_0},\tag{a} \] where \({\mathcal D}_{u_0}\) is a suitable Dirichlet class and the integrand \(f\) is the convex function with linear growth. The main focus of the paper is on higher Sobolev and partial regularity for generalized minima of the variational principle (a). The corresponding results rely on the degenerate elliptic behavior of the integrands \(f\) known for the Dirichlet problem on BV. In the paper, new criteria are developed for the full gradients of generalized minima to exist as locally finite Radon measures.
While the paper is lengthy, it is clearly written, and the motivation behind the work is well explained and illustrated.

MSC:

49N60 Regularity of solutions in optimal control
35A15 Variational methods applied to PDEs

References:

[1] Acerbi, E.; Fusco, N., A regularity theorem for minimizers of quasiconvex integrals, Arch. Ration. Mech. Anal., 99, 3, 261-281 (1987) · Zbl 0627.49007
[2] Acerbi, E.; Fusco, N., Regularity for minimizers of nonquadratic functionals: the case \(1<p<2\), J. Math. Anal. Appl., 140, 1, 115-135 (1989) · Zbl 0686.49004
[3] Acerbi, E.; Mingione, G., Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164, 213-259 (2002) · Zbl 1038.76058
[4] Allard, WK, On the first variation of a varifold, Ann. Math., 2, 95, 417-491 (1972) · Zbl 0252.49028
[5] Almgren, FJ Jr, Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. Math., 2, 87, 321-391 (1968) · Zbl 0162.24703
[6] Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139(3), 201-238, 1997 (English summary) · Zbl 0890.49019
[7] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems, p. xviii+434. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York 2000 · Zbl 0957.49001
[8] Anzellotti, G., The Euler equation for functionals with linear growth, Trans. Am. Math. Soc., 290, 483-501 (1985) · Zbl 0611.49018
[9] Anzellotti, G.; Giaquinta, M., Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition, Manuscr. Math., 32, 1-2, 101-136 (1980) · Zbl 0465.73022
[10] Anzellotti, G.; Giaquinta, M., Convex functionals and partial regularity, Arch. Ration. Mech. Anal., 102, 3, 243-272 (1988) · Zbl 0658.49005
[11] Babadjian, J-F, Traces of functions of bounded deformation, Indiana Univ. Math. J., 64, 4, 1271-1290 (2015) · Zbl 1339.26030
[12] Baroni, P.; Colombo, M.; Mingione, G., Regularity for general functionals with double phase, J. Calc. Var., 57, 62 (2018) · Zbl 1394.49034
[13] Beck, L., Bulíček, M., Gmeineder, F.: On a Neumann problem for variational functionals of linear growth. To appear at Annali della Scuola Normale Superiore · Zbl 1484.49065
[14] Beck, L.; Schmidt, T., On the Dirichlet problem for variational integrals in BV, J. Reine Angew. Math., 674, 113-194 (2013) · Zbl 1260.49079
[15] Beck, L.; Schmidt, T., Interior gradient regularity for BV minimizers of singular variational problems, Nonlinear Anal., 120, 86-106 (2015) · Zbl 1319.49054
[16] Bernstein, S., Sur les equations du calcul des variations, Ann. Sci. Ecole Norm. Sup., 29, 431-485 (1912) · JFM 43.0460.01
[17] Bildhauer, M., Fuchs, M.: On a class of variational integrals with linear growth satisfying the condition of \(\mu \)-ellipticity. Rend. Mat. Appl. (7)22(2002), 249-274, 2003 · Zbl 1047.49029
[18] Bildhauer, M., A priori gradient estimates for bounded generalised solutions of a class of variational problems with linear growth, J. Convex Anal., 9, 117-137 (2002) · Zbl 1011.49022
[19] Bildhauer, M.: Convex variational problems. Linear, nearly linear and anisotropic growth conditions. Lecture Notes in Mathematics, 1818, p. x+217. Springer-Verlag, Berlin 2003 · Zbl 1033.49001
[20] Breit, D.; Diening, L., Sharp conditions for Korn inequalities in Orlicz spaces, J. Math. Fluid Mech., 14, 3, 565-573 (2012) · Zbl 1280.35106
[21] Breit, D.; Diening, L.; Gmeineder, F., On the trace operator for functions of bounded \({\mathbb{A}} \)-variation, Anal. PDE, 13, 2, 559-594 (2020) · Zbl 1450.46017
[22] Carozza, M., Kristensen, J., Passarelli Di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. l’Instit. Henri Poincare (C) Anal. Non Lineaire Issue 328, 395-411, 2011 · Zbl 1245.49052
[23] Cianchi, A., Korn type inequalities in Orlicz spaces, J. Funct. Anal., 267, 2313-2352 (2014) · Zbl 1312.46037
[24] Conti, S.; Faraco, D.; Maggi, F., A new approach to counterexamples to \({{\rm L}}^1\)-estimates: Korn’s inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal., 175, 287-300 (2005) · Zbl 1080.49026
[25] Conti, S.; Focardi, M.; Iurlano, F., A note on the Hausdorff dimension of the singular set of solutions to elasticity type systems, Commun. Contemp. Math., 21, 6, 1950026 (2019) · Zbl 1432.35079
[26] Christiansen, E., Matthies, H., Strang, G.: The saddle point of a differential program, pp. 309-318. Energy methods in finite element analysis, Wiley, Chichester 1979
[27] De Giorgi, E.: Frontiere orientate di misura minima. (Italian) Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61 Editrice Tecnico Scientifica, Pisa 57 pp 1961
[28] Diening, L.; Lengeler, D.; Stroffolini, B.; Verde, A., Partial regularity for minimizers of quasi-convex functionals with general growth, SIAM J. Math. Anal., 44, 5, 3594-3616 (2012) · Zbl 1257.49037
[29] Duzaar, F.; Grotowski, JF, Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscr. Math., 103, 3, 267-298 (2000) · Zbl 0971.35025
[30] Duzaar, F., Grotowski, J.F., Kronz, M.: Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. (4)184(4), 421-448, 2005 · Zbl 1223.49040
[31] Duzaar, F., Mingione, G.: Regularity for degenerate elliptic problems via \(p\)-harmonic approximation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire21(5), 735-766, 2004 · Zbl 1112.35078
[32] Duzaar, F.; Mingione, G., The \(p\)-harmonic approximation and the regularity of \(p\)-harmonic maps, Calc. Var. Partial. Differ. Equ., 20, 235-256 (2004) · Zbl 1142.35433
[33] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015
[34] Esposito, L.; Leonetti, F.; Mingione, G., Higher integrability for minimizers of integral functionals with \((p, q)\)-growth, J. Differ. Equations, 157, 414-438 (1999) · Zbl 0939.49021
[35] Evans, LC, Quasiconvexity and partial regularity in the calculus of variations, Arch. Ration. Mech. Anal., 95, 3, 227-252 (1986) · Zbl 0627.49006
[36] Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, 19., 2nd edn. American Mathematical Society, Providence, RI 2010 · Zbl 1194.35001
[37] Finn, R., Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, J. Anal. Math., 14, 139-160 (1965) · Zbl 0163.34604
[38] Fuchs, M.; Mingione, G., Full \({{\rm C}}^{1,\alpha }\)-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth, Manuscr. Math., 102, 227-250 (2000) · Zbl 0995.49023
[39] Fuchs, M.; Seregin, G., A regularity theory for variational integrals with \(L ln L\)-growth, Calc. Var. Partial Differential Equations, 6, 2, 171-187 (1998) · Zbl 0929.49022
[40] Fuchs, M.; Seregin, G., Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Lecture Notes in Mathematics (2000), Berlin: Springer, Berlin · Zbl 0964.76003
[41] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983 · Zbl 0516.49003
[42] Giaquinta, M., Modica, G., Soucek, J.: Functionals with linear growth in the calculus of variations. I, II. Comment. Math. Univ. Carolin. 20(1), 143-156-172, 1979 · Zbl 0409.49006
[43] Giusti, E., Direct Methods in the Calculus of Variations (2003), River Edge: World Scientific Publishing Co., Inc., River Edge · Zbl 1028.49001
[44] Gmeineder, F.: Symmetric-convex functionals of linear growth. J. Ell. Par. Equations 2(1-2), 59-71, 2016 · Zbl 1383.49020
[45] Gmeineder, F.: Partial regularity for symmetric quasiconvex functionals. Preprint. arXiv:1903.08639 · Zbl 1383.49020
[46] Gmeineder, F.; Kristensen, J., Sobolev regularity for convex functionals on \({{\rm BD}}\), J. Calc. Var., 58, 56 (2019) · Zbl 1409.49034
[47] Gmeineder, F.; Kristensen, J., Partial regularity for BV minimizers, Arch. Ration. Mech. Anal., 232, 3, 1429-1473 (2019) · Zbl 1411.26016
[48] Gmeineder, F., Raita, B., Van Schaftingen, J.: On limiting trace inequalities for vectorial differential operators. To appear at Indiana Univ. Math. J. Preprint. arXiv:1903.08633
[49] Goffman, C.; Serrin, J., Sublinear functions of measures and variational integrals, Duke Math. J., 31, 159-178 (1964) · Zbl 0123.09804
[50] Kazaniecki, K.; Stolyarov, DM; Wojciechowski, M., Anisotropic Ornstein non inequalities, Anal. PDE, 10, 351-366 (2017) · Zbl 1362.35013
[51] Kirchheim, B.; Kristensen, J., On rank one convex functions that are homogeneous of degree one, Arch. Ration. Mech. Anal., 221, 1, 527-558 (2016) · Zbl 1342.49015
[52] Kohn, R.V.: New Estimates for Deformations in Terms of their Strains. Ph.D. Thesis, Princeton Univ., 1979
[53] Kohn, RV, New integral estimates for deformations in terms of their nonlinear strains, Arch. Ration. Mech. Anal., 78, 2, 131-172 (1982) · Zbl 0491.73023
[54] Kristensen, J.; Mingione, G., The singular set of minima of integral functionals, Arch. Ration. Mech. Anal., 180, 3, 331-398 (2006) · Zbl 1116.49010
[55] Kristensen, J.; Mingione, G., The singular set of \(\omega \)-minima, Arch. Ration. Mech. Anal., 177, 1, 93-114 (2005) · Zbl 1082.49036
[56] Kristensen, J.; Mingione, G., Non-differentiable functionals and singular sets of minima, C. R. Math. Acad. Sci. Paris, 340, 1, 93-98 (2005) · Zbl 1058.49012
[57] Ladyzhenskaya, OA; Ural’ceva, NN, Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Commun. Pure Appl. Math., 83, 677-703 (1970) · Zbl 0193.07202
[58] Marcellini, P., Sbordone, C.: On the existence of minima of multiple integrals of the calculus of variations. J. Math. Pures Appl. IX. Sér. 62, 1-9, 1983 · Zbl 0516.49011
[59] Marcellini, P., Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions, Arch. Ration. Mech. Anal., 105, 267-284 (1989) · Zbl 0667.49032
[60] Marcellini, P., Regularity and existence of solutions of elliptic equations with \(p, q\)-growth conditions, J. Differ. Equations, 90, 1-30 (1991) · Zbl 0724.35043
[61] Mingione, G., The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., 166, 4, 287-301 (2003) · Zbl 1142.35391
[62] Mingione, G., Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51, 4, 355-426 (2006) · Zbl 1164.49324
[63] Mingione, G.: Singularities of minima: a walk on the wild side of the calculus of variations. J. Global Optim. 40(1-3), 209-223, 2008 (English summary) · Zbl 1295.49025
[64] Mingione, G., Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differential Equations, 18, 4, 373-400 (2003) · Zbl 1045.35024
[65] Ornstein, D., A non-equality for differential operators in the \({{\rm L}}_1\)-norm, Arch. Ration. Mech. Anal., 11, 40-49 (1962) · Zbl 0106.29602
[66] Reshetnyak, YuG, Weak convergence of completely additive vector functions on a set, Sib. Math. J., 9, 6, 1039-1045 (1968) · Zbl 0176.44402
[67] Reshetnjak, Yu.G: Estimates for certain differential operators with finite-dimensional kernel. Sibirsk. Mat. Z. 11, 414-428, 1970 (in Russian) · Zbl 0233.35010
[68] Santi, E.: Sul problema al contorno per l’equazione delle superfici di area minima su domini limitati qualqunque. Ann. Univ. Ferrara, N. Ser., Sez. VII17, 13-26, 1972 · Zbl 0243.53008
[69] Schmidt, T., Partial regularity for degenerate variational problems and image restoration models in BV, Indiana Univ. Math. J., 63, 213-279 (2014) · Zbl 1319.49058
[70] Schmidt, T.: BV Minimizers of Variational Integrals: Existence, Uniqueness, Regularity. Habilitationsschrift (postdoctoral thesis), Friedrich-Alexander-Universität Erlangen-Nürnberg, 86 pp. 2015
[71] Seregin, G.: Variation-difference schemes for problems in the mechanics of ideally elastoplastic media. U.S.S.R. Comput. Math. Math. Phys.25, 153-165, 1985; translation from Zh. Vychisl. Mat. Mat. Fiz. 25, 237-253, 1985 · Zbl 0566.73031
[72] Seregin, G.: Differential properties of solutions of variational problems for functionals of linear growth. J. Sov. Math.64, 1256-1277, 1993; translation from Probl. Mat. Anal. 11(51-79), 1990 · Zbl 0773.49020
[73] Seregin, G.: Two-dimensional variational problems of the theory of plasticity. Izv. Math.60, 179-216, 1996; translation from Izv. Ross. Akad. Nauk Ser. Mat.60, 175-210, 1996 · Zbl 0881.73039
[74] Seregin, G., Differentiability properties of weak solutions of certain variational problems in the theory of perfect elastoplastic plates, Appl. Math. Optim., 28, 307-335 (1993) · Zbl 0779.73086
[75] Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans R. Soc. Lond. Ser. A264(1153), 413-496, 1969 · Zbl 0181.38003
[76] Smith, KT, Formulas to represent functions by their derivatives, Math. Ann., 188, 53-77 (1970) · Zbl 0324.35009
[77] Strang, G., Temam, R.: Functions of bounded deformation. Arch. Ration. Mech. Anal.75(1), 7-21, 1980/81 · Zbl 0472.73031
[78] Strauss, M.J.: Variations of Korn’s and Sobolev’s equalities. In: Partial Differential Equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 207-214. Amer. Math. Soc., Providence, RI, 1973 · Zbl 0259.35008
[79] Suquet, P.-M.: Sur un nouveau cadre fonctionnel pour les Équations de la plasticité. C. R. Acad. Sci. Paris Sér. A-B286(23), A1129-A1132, 1978 (in French) · Zbl 0378.35056
[80] Temam, R., Problemes mathématiques en plasticité (1985), Paris: Gauthier-Villars, Paris · Zbl 0547.73026
[81] Uhlenbeck, K., Regularity for a class of nonlinear elliptic systems, Acta Math., 138, 219-240 (1977) · Zbl 0372.35030
[82] Ural’ceva, NN, Quasilinear degenerate elliptic systems, Leningrad Odtel. Mat. Inst. Steklov (LOMI), 7, 184-222 (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.