×

Sobolev regularity for convex functionals on BD. (English) Zbl 1409.49034

In this paper, the regularity of minimizers associated with some autonomous convex variational integrals, subject to suitable Dirichlet boundary conditions, are studied. More precisely, the present research work extends the results for the BV-setting to the case of functionals whose full gradients are a-priori not known to exist as finite matrix-valued Radon measures.

MSC:

49N60 Regularity of solutions in optimal control
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case \[1<p<21\]<p<2. J. Math. Anal. Appl. 140(1), 115-135 (1989) · Zbl 0686.49004 · doi:10.1016/0022-247X(89)90098-X
[2] Ambrosio, L., Coscia, A., Dal Maso, G.: Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139(3), 201-238 (1997) · Zbl 0890.49019 · doi:10.1007/s002050050051
[3] Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000) · Zbl 0957.49001
[4] Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483-501 (1985) · Zbl 0611.49018 · doi:10.1090/S0002-9947-1985-0792808-4
[5] Anzellotti, G., Giaquinta, M.: Existence of the displacement field for an elastoplastic body subject to Hencky’s law and von Mises yield condition. Manuscr. Math. 32(1-2), 101-136 (1980) · Zbl 0465.73022 · doi:10.1007/BF01298185
[6] Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996) · doi:10.1007/978-3-662-03282-4
[7] Babadjian, J.-F.: Traces of functions of bounded deformation. Indiana Univ. Math. J. 64(4), 1271-1290 (2015) · Zbl 1339.26030 · doi:10.1512/iumj.2015.64.5601
[8] Beck, L., Schmidt, T.: On the Dirichlet problem for variational integrals in BV. J. Reine Angew. Math. 674, 113-194 (2013) · Zbl 1260.49079
[9] Bildhauer, M.: Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics, vol. 1818, p. x+217. Springer, Berlin (2003) · Zbl 1033.49001
[10] Bildhauer, M.: A priori gradient estimates for bounded generalised solutions of a class of variational problems with linear growth. J. Convex Ana. 9, 117-137 (2002) · Zbl 1011.49022
[11] Bildhauer, M., Fuchs, M.: Partial regularity for variational integrals with (s, q)-growth. Calc. Var. 13, 537-560 (2001) · Zbl 1018.49026 · doi:10.1007/s005260100090
[12] Bildhauer, M., Fuchs, M.: On a class of variational integrals with linear growth satisfying the condition of \[\mu\] μ-ellipticity. Rend. Mat. Appl. 22(7), 249-274 (2002) · Zbl 1047.49029
[13] Bildhauer, M., Fuchs, M., Mingione, G.: A priori gradient bounds and local \[\text{ C }^{1,\alpha }\] C1,α-estimates for (double) obstacle problems under non-standard growth conditions. Z. Anal. Anwend. 20(4), 959-985 (2001) · Zbl 1011.49024 · doi:10.4171/ZAA/1054
[14] Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \[W^{s,p}\] Ws,p when \[s\uparrow 1\] s↑1 and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 77-101 (2002) · Zbl 1029.46030 · doi:10.1007/BF02868470
[15] Conti, S., Focardi, M., Iurlano, F.: Which special functions of bounded deformation have bounded variation? Proc. R. Soc. Edinb. Sect. A 148(1), 33-50 (2018) · Zbl 1381.26017 · doi:10.1017/S030821051700004X
[16] Carozza, M., Kristensen, J., Passarelli Di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3), 395-411 (2011) · Zbl 1245.49052 · doi:10.1016/j.anihpc.2011.02.005
[17] Carozza, M., Kristensen, J., di Napoli, A.P.: Regularity of minimizers of autonomous convex variational integrals. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13(4), 1065-1089 (2014) · Zbl 1311.49093
[18] Carozza, M., Kristensen, J., di Napoli, A.P.: On the validity of the Euler-Lagrange system. Commun. Pure Appl. Anal. 14(1), 51-62 (2015) · Zbl 1326.49027 · doi:10.3934/cpaa.2015.14.51
[19] Christiansen, E., Matthies, H., Strang, G.: The Saddle Point of a Differential Program. Energy Methods in Finite Element Analysis, pp. 309-318. Wiley, Chichester (1979)
[20] Conti, S., Faraco, D., Maggi, F.: A new approach to counterexamples to \[\text{ L }:^1\] L:1-estimates: Korns inequality, geometric rigidity, and regularity for gradients of separately convex functions. Arch. Ration. Mech. Anal. 175, 287-300 (2005) · Zbl 1080.49026 · doi:10.1007/s00205-004-0350-5
[21] Demengel, F., Temam, R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673-709 (1984) · Zbl 0581.46036 · doi:10.1512/iumj.1984.33.33036
[22] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976) · Zbl 0322.90046
[23] Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with (p, q)-growth. J. Differ. Equ. 204, 5-55 (2001) · Zbl 1072.49024 · doi:10.1016/j.jde.2003.11.007
[24] Finn, R.: Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature. J. Anal. Math. 14, 139-160 (1965) · Zbl 0163.34604 · doi:10.1007/BF02806384
[25] Fuchs, M., Mingione, G.: Full \[\text{ C }^{1,\alpha }\] C1,α-regularity for free and constrained local minimizers of elliptic variational integrals with nearly linear growth. Manuscr. Math. 102(2), 227-250 (2000) · Zbl 0995.49023 · doi:10.1007/s002291020227
[26] Fuchs, M., Seregin, G.: Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids. Annales Universitatis Saraviensis. Series Mathematicae, vol. 10, no. 1, iv+283 pp. (1999) · Zbl 0943.74076
[27] Giaquinta, M., Modica, G., Souček, J.: Functionals with linear growth in the calculus of variations II. Comment. Math. Univ. Carol. 20, 157-172 (1979) · Zbl 0409.49007
[28] Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc, River Edge (2003) · Zbl 1028.49001 · doi:10.1142/5002
[29] Gmeineder, F.: Regularity Theory for Variational Problems on BD. DPhil Thesis, University of Oxford (2017)
[30] Gmeineder, F.: Regularity for the Dirichlet problem on BD (in preparation) · Zbl 1442.49048
[31] Giaquinta, M., Modica, G., Souček, J.: Functionals with linear growth in the calculus of variations. Comment. Math. Univ. Carol. 20, 143-172 (1979) · Zbl 0409.49006
[32] Goffman, C., Serrin, J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159-178 (1964) · Zbl 0123.09804 · doi:10.1215/S0012-7094-64-03115-1
[33] Kazaniecki, K., Stolyarov, D.M., Wojciechowski, M.: Anisotropic Ornstein non inequalities. Anal. PDE 10, 351-366 (2017) · Zbl 1362.35013 · doi:10.2140/apde.2017.10.351
[34] Kirchheim, B., Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221(1), 527-558 (2016) · Zbl 1342.49015 · doi:10.1007/s00205-016-0967-1
[35] Marcellini, P.: Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90, 1-30 (1991) · Zbl 0724.35043 · doi:10.1016/0022-0396(91)90158-6
[36] Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Differ. Equ. 105, 296-333 (1993) · Zbl 0812.35042 · doi:10.1006/jdeq.1993.1091
[37] Mingione, G.: The singular set of solutions to non-differentiable elliptic systems. Arch. Ration. Mech. Anal. 166(4), 287-301 (2003) · Zbl 1142.35391 · doi:10.1007/s00205-002-0231-8
[38] Ornstein, D.: A non-equality for differential operators in the \[L^1\] L1-norm. Arch. Ration. Mech. Anal. 11, 40-49 (1962) · Zbl 0106.29602 · doi:10.1007/BF00253928
[39] Reshetnyak, YuG: Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9(6), 1039-1045 (1968) · Zbl 0176.44402 · doi:10.1007/BF02196453
[40] Santi, E.: Sul problema al contorno per l’equazione della superfici di area minima su domini limitati qualunque. Ann. Univ. Ferrara, N. Ser. Sez VII(17), 13-26 (1972) · Zbl 0243.53008
[41] Seregin, G.: Variation-difference schemes for problems in the mechanics of ideally elastoplastic media. USSR Comput. Math. Math. Phys. 25, 153-165 (1985) (trans: Zh. Vychisl. Mat. Mat. Fiz. 25, 237-253 (1985)) · Zbl 0584.73039
[42] Seregin, G.: Differential properties of solutions of variational problems for functionals of linear growth. J. Sov. Math. 64, 1256-1277 (1993) (trans: Probl. Mat. Anal. 11, 51-79 (1990)) · Zbl 0791.49040
[43] Seregin, G.: Two-dimensional variational problems of the theory of plasticity. Izv. Math. 60, 179-216 (1996) (trans: Izv. Ross. Akad. Nauk, Ser. Mat. 60, 175-210 (1996)) · Zbl 0881.73039
[44] Seregin, G.: Differentiability properties of weak solutions of certain variational problems in the theory of perfect elastoplastic plates. Appl. Math. Optim. 28, 307-335 (1993) · Zbl 0779.73086 · doi:10.1007/BF01200383
[45] Smith, K.T.: Formulas to represent functions by their derivatives. Math. Ann. 188, 53-77 (1970) · Zbl 0187.03102 · doi:10.1007/BF01435415
[46] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. With the Assistance of Timothy S. Murphy. Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[47] Serrin, J.: The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Philos. Trans. R. Soc. Lond. Ser. A 264, 413-496 (1969) · Zbl 0181.38003 · doi:10.1098/rsta.1969.0033
[48] Strang, G., Temam, R.: Functions of bounded deformation. Arch. Ration. Mech. Anal. 75(1), 7-21 (1980/81) · Zbl 0472.73031
[49] Suquet, P.-M.: Sur un nouveau cadre fonctionnel pour les quations de la plasticit (French) C. R. Acad. Sci. Paris Sr. A-B 286(23), A1129-A1132 (1978) · Zbl 0378.35056
[50] Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Lecture Notes of the Unione Matematica Italiana, vol. 18 (2007) · Zbl 1126.46001
[51] Triebel, H.: Theory of function spaces. Reprint of 1983 edition. Also published in 1983 by Birkhäuser Verlag [MR0781540]. Modern Birkhäuser Classics, 285 pp. Birkhäuser/Springer Basel AG, Basel (2010) · Zbl 1235.46002
[52] Van Schaftingen, J.: Limiting Sobolev inequalities for vector fields and canceling linear differential operators. J. Eur. Math. Soc. (JEMS) 15(3), 877-921 (2013) · Zbl 1284.46032 · doi:10.4171/JEMS/380
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.