×

Liftings for ultra-modulation spaces, and one-parameter groups of Gevrey-type pseudo-differential operators. (English) Zbl 1442.35573

Summary: We deduce one-parameter group properties for pseudo-differential operators \(\text{Op}(a)\), where \(a\) belongs to the class \(\Gamma_\ast^{(\omega_0)}\) of certain Gevrey symbols. We use this to show that there are pseudo-differential operators \(\text{Op}(a)\) and \(\text{Op}(b)\) which are inverses to each other, where \(a \in \Gamma_\ast^{(\omega_0)}\) and \(b \in \Gamma_\ast^{(1 / \omega_0)}\). We apply these results to deduce lifting property for modulation spaces and construct explicit isomorphisms between them. For each weight functions \(\omega, \omega_0\) moderated by GRS submultiplicative weights, we prove that the Toeplitz operator (or localization operator) \(\text{Tp}(\omega_0)\) is an isomorphism from \(M_{(\omega)}^{p, q}\) to \(M_{(\omega / \omega_0)}^{p, q}\) for every \(p, q \in (0, \infty]\).

MSC:

35S05 Pseudodifferential operators as generalizations of partial differential operators
47D06 One-parameter semigroups and linear evolution equations
46B03 Isomorphic theory (including renorming) of Banach spaces
42B35 Function spaces arising in harmonic analysis
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
46F05 Topological linear spaces of test functions, distributions and ultradistributions
46G15 Functional analytic lifting theory
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)

References:

[1] Aoki, T., Locally bounded topological spaces, Proc. Japan Acad.18 (1942) 588-594. · Zbl 0060.26503
[2] Biagioni, H. A. and Gramchev, T., Fractional derivative estimates in Gevrey classes, global regularity and decay for solutions to semilinear equations in \(\mathbf{R}^d\), J. Differential Equations194 (2003) 140-165. · Zbl 1160.35311
[3] Bony, J. M. and Chemin, J. Y., Espaces functionnels associés au calcul de Weyl-Hörmander, Bull. Soc. math. France122 (1994) 77-118. · Zbl 0798.35172
[4] Cappiello, M., Gramchev, T. and Rodino, L., Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients, J. Funct. Anal.237 (2006) 634-654. · Zbl 1104.35049
[5] Cappiello, M. and Toft, J., Pseudo-differential operators in a Gelfand-Shilov setting, Math. Nachr.290 (2017) 738-755. · Zbl 1377.47017
[6] Carypis, E. and Wahlberg, P., Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians, J. Fourier Anal. Appl.23 (2017) 530-571. · Zbl 1377.35228
[7] Chen, Y., Signahl, M. and Toft, J., Factorizations and singular value estimates of operators with Gelfand-Shilov and Pilipović kernels, J. Fourier Anal. Appl.24 (2018) 666-698. · Zbl 1458.47009
[8] Chen, Y., Toft, J. and Wahlberg, P., The Weyl product on quasi-Banach modulation spaces, Bull. Math. Sci.9 (2019). · Zbl 1467.35369
[9] Chung, J., Chung, S. Y. and Kim, D., Characterization of the Gelfand-Shilov spaces via Fourier transforms, Proc. Amer. Math. Soc.124 (1996) 2101-2108. · Zbl 0871.46018
[10] Cordero, E. and Gröchenig, K., Time-frequency analysis of localization operators, J. Funct. Anal. (1)205 (2003) 107-131. · Zbl 1047.47038
[11] Cordero, E., Nicola, F. and Rodino, L., Gabor Representations of evolution operators, Trans. Amer. Math. Soc.367 (2015) 7639-7663. · Zbl 1338.35519
[12] Cordero, E., Pilipović, S., Rodino, L. and Teofanov, N., Quasianalytic Gelfand-Shilov spaces with applications to localization operators, Rocky J. Math.40 (2010) 1123-1147. · Zbl 1200.47065
[13] Cordero, E., Toft, J. and Wahlberg, P., Sharp results for the Weyl product on modulation spaces, J. Funct. Anal.267 (2014) 3016-3057. · Zbl 1317.35307
[14] Feichtinger, H. G., Banach convolution algebras of Wiener’s type, inProc. Functions, Series, Operators, Budapest, Colloquia Mathematica (North Holland Societaties Janos Bolyai, Amsterdam, 1980).
[15] Feichtinger, H. G., Modulation spaces on locally compact abelian groups, in Proc. of Int. Conf. Wavelets and Applications 2002, Chennai, India, , 2003, pages 99-140, Updated version of a technical report, University of Vienna (1983).
[16] Feichtinger, H. G., Atomic characterizations of modulation spaces through Gabor-type representations, in Proc. Conf. Constructive Function Theory, Rocky Mountain J. Math.19 (1989) 113-126. · Zbl 0780.46023
[17] Feichtinger, H. G., Wiener amalgams over Euclidean spaces and some of their applications, in Function Spaces, , Vol. 136 (Marcel Dekker, New York, 1992), pp. 123-137. · Zbl 0833.46030
[18] Feichtinger, H. G., Modulation spaces: Looking back and ahead, Sampl. Theory Signal Image Process.5 (2006) 109-140. · Zbl 1156.43300
[19] Feichtinger, H. G. and Gröchenig, K. H., Banach spaces related to integrable group representations and their atomic decompositions, I, J. Funct. Anal.86 (1989) 307-340. · Zbl 0691.46011
[20] Fernandez, C., Galbis, A. and Toft, J., Spectral invariance for matrix algebras, J. Fourier Anal. Appl.20 (2014) 362-383. · Zbl 1316.15020
[21] Feichtinger, H. G. and Gröchenig, K. H., Banach spaces related to integrable group representations and their atomic decompositions, II, Monatsh. Math.108 (1989) 129-148. · Zbl 0713.43004
[22] Folland, G. B., Harmonic analysis in phase space, (Princeton University Press, Princeton, 1989). · Zbl 0682.43001
[23] Galperin, Y. V. and Samarah, S., Time-frequency analysis on modulation spaces \(M_m^{p , q}, 0<p,q\leq\infty \), Appl. Comput. Harmon. Anal.16 (2004) 1-18. · Zbl 1040.42025
[24] Gelfand, I. M., Shilov, G. E., Generalized Functions, II, III, (Academic Press, New York, 1968). · Zbl 0159.18301
[25] Gröchenig, K. H., Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001). · Zbl 0966.42020
[26] Gröchenig, K. H., Composition and spectral invariance of pseudodifferential operators on modulation spaces, J. Anal. Math.98 (2006) 65-82. · Zbl 1148.47036
[27] Gröchenig, K. H., Time-frequency analysis of Sjöstrand’s class, Rev. Mat. Iberoam.22 (2006) 703-724. · Zbl 1127.35089
[28] Gröchenig, K., Weight functions in time-frequency analysis, in eds. Pseudodifferential Operators: Partial Differential Equations and Time-Frequency AnalysisRodino, L. and Wong, M. W., , Vol. 52 (2007), pp. 343-366. · Zbl 1132.42313
[29] Gröchenig, K. and Strohmer, T., Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class, J. Reine Angew. Math.613 (2007) 121-146. · Zbl 1145.47034
[30] Gröchenig, K. and Toft, J., Isomorphism properties of Toeplitz operators and pseudo-differential operators between modulation spaces, J. Anal. Math.114 (2011) 255-283. · Zbl 1243.42037
[31] Gröchenig, K. and Toft, J., The range of localization operators and lifting theorems for modulation and Bargmann-Fock spaces, Trans. Amer. Math. Soc.365 (2013) 4475-4496. · Zbl 1283.46021
[32] Gröchenig, K. H. and Zimmermann, G., Spaces of test functions via the STFT, J. Funct. Spaces. Appl.2 (2004) 25-53. · Zbl 1069.46021
[33] Gzyl, H., Multidimensional extension of Faà di Bruno’s formula, J. Math. Anal. Appl.116 (1986) 450-455. · Zbl 0651.05013
[34] Hörmander, L., The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math.32 (1979) 359-443. · Zbl 0388.47032
[35] Hörmander, L., The Analysis of Linear Partial Differential Operators, I, III (Springer-Verlag, Berlin, 1983, 1985). · Zbl 0521.35002
[36] Z. Lozanov-Crvenković, D. Perišić and M. Tasković, Gelfand-Shilov spaces structural and kernel theorems, preprint (2007), arXiv:0706.2268v2. · Zbl 1274.46077
[37] Lerner, N., The Wick calculus of pseudo-differential operators and some of its applications, CUBO5 (2003) 213-236. · Zbl 1369.47066
[38] Lerner, N., Metrics on the Phase Space and Non-Selfadjoint Pseudo-Differential Operators (Birkhäuser, 2010). · Zbl 1186.47001
[39] Mitjagin, B. S., Nuclearity and other properties of spaces of type \(\mathcal{\mathcal{S}} \), Amer.Math. Soc. Transl. Ser.93 (1970) 49-59. · Zbl 0206.11904
[40] Nicola, F. and Rodino, L., Global pseudo-differential calculus on Euclidean spaces, on Pseudo-Differential Operators. Theory and Applications, Vol. 4 (Birkhäuser Verlag, 2010). · Zbl 1257.47002
[41] Pfeuffer, C. and Toft, J., Compactness properties for modulation spaces, Complex Anal. and Oper. Theory (2019). https://doi.org/10.1007/s11785-019-00903-4 · Zbl 1444.42029
[42] Pilipović, S., Tempered ultradistributions, Boll. Un. Mat. Ital. VII Ser.2 (1988) 235-251. · Zbl 0657.46030
[43] Pilipović, S. and Teofanov, N., Pseudodifferential operators on ultramodulation spaces, J. Funct. Anal.208 (2004) 194-228. · Zbl 1060.47050
[44] Prangoski, B., Pseudodifferential operators of infinite order in spaces of tempered ultradistributions, J. Pseudo-Differ. Oper. Appl.4 (2013) 495-549. · Zbl 1327.47041
[45] Rolewicz, S., On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Sér. Schi. Math. Astronom. Phys.5 (1957) 471-473. · Zbl 0079.12602
[46] Ruzhansky, M., Sugimoto, M., Tomita, N. and Toft, J., Changes of variables in modulation and Wiener amalgam spaces, Math. Nachr.284 (2011) 2078-2092. · Zbl 1228.35279
[47] Ruzhansky, M. aned Tokmagambetov, N., Nonharmonic analysis of boundary value problems, Int. Math. Res. Notices12 (2016) 3548-3615. · Zbl 1408.35240
[48] Sjöstrand, J., An algebra of pseudodifferential operators, Math. Res. Lett.1 (1994) 185-192. · Zbl 0840.35130
[49] Tachizawa, K., The boundedness of pseudo-differential operators on modulation spaces, Math. Nachr.168 (1994) 263-277. · Zbl 0837.35154
[50] Teofanov, N., Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process5 (2006) 225-242. · Zbl 1156.46302
[51] Teofanov, N., The Grossmann-Royer transform, Gelfand-Shilov spaces, and continuity properties of localization operators on modulation spaces, in eds. Mathematical Analysis and Applications, Rodino, L. and Toft, J., , Vol. 262 (Springer, Cham, 2018), pp. 161-207. · Zbl 1425.46025
[52] Toft, J., Continuity properties for non-commutative convolution algebras with applications in pseudo-differential calculus, Bull. Sci. Math.126 (2002) 115-142. · Zbl 1002.43003
[53] Toft, J., Continuity properties for modulation spaces with applications to pseudo-differential calculus, II, Ann. Global Anal. Geom.26 (2004) 73-106. · Zbl 1098.47045
[54] Toft, J., Continuity and Schatten properties for pseudo-differential operators on modulation spaces, in eds. Modern Trends in Pseudo-Differential Operators, Toft, J., Wong, M. W. and Zhu, H., , Vol. 172 (Birkhäuser Verlag, Basel, 2007), pp. 173-206. · Zbl 1133.35110
[55] Toft, J., Continuity and Schatten properties for Toeplitz operators on modulation spaces, in eds. Modern Trends in Pseudo-Differential Operators, Toft, J., Wong, M. W. and Zhu, H., , Vol. 172 (Birkhäuser Verlag, Basel, 2007), pp. 313-328. · Zbl 1147.47018
[56] Toft, J., Pseudo-differential operators with smooth symbols on modulation spaces, CUBO11 (2009) 87-107. · Zbl 1186.35252
[57] Toft, J., Multiplication properties in pseudo-differential calculus with small regularity on the symbols, J. Pseudo-Differ. Oper. Appl.1 (2010) 101-138. · Zbl 1206.35268
[58] Toft, J., The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl.3 (2012) 145-227. · Zbl 1257.42033
[59] Toft, J., Multiplication properties in Gelfand-Shilov pseudo-differential calculus, in eds. Pseudo-Differential Operators, Generalized Functions and Asymptotics, Molahajlo, S., Pilipović, S., Toft, J. and Wong, M. W., , Vol. 231 (Birkhäuser, Basel, 2013), pp. 117-172. · Zbl 1273.35334
[60] Toft, J., Gabor analysis for a broad class of quasi-Banach modulation spaces, in eds. Pseudo-Differential Operators and Generalized Functions, Pilipović, S. and Toft, J., , Vol. 245 (Birkhäuser, Basel, 2015), pp. 249-278. · Zbl 1351.46004
[61] Toft, J., Matrix parameterized pseudo-differential calculi on modulation spaces, in eds. Generalized functions and Fourier analysis, Oberguggenberger, M., Toft, J., Vindas, J. and Wahlberg, P., , Vol. 260 (Birkhäuser/Springer, Basel, 2017), pp. 215-235. · Zbl 1390.35447
[62] Toft, J., Continuity of Gevrey-Hörmander pseudo-differential operators on modulation spaces, J. Pseudo-Differ. Oper. Appl.10 (2019) 337-358. · Zbl 1421.35401
[63] Toft, J. and Boggiatto, P., Schatten classes for Toeplitz operators with Hilbert space windows on modulation spaces, Adv. Math.217 (2008) 305-333. · Zbl 1131.47026
[64] Toft, J., Khrennikov, A., Nilsson, B. and Nordebo, S., Decompositions of Gelfand-Shilov kernels into kernels of similar class, J. Math. Anal. Appl.396 (2012) 315-322. · Zbl 1262.47040
[65] G. Tranquilli, Global normal forms and global properties in function spaces for second order Shubin type operators, Ph.D. Thesis (2013).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.