×

Super-exponential decay and holomorphic extensions for semilinear equations with polynomial coefficients. (English) Zbl 1104.35049

New results concerning the regularity and exponential decay of the solutions \(u\) of semilinear perturbations of Shubin type equations are obtained. Two cases are studied: i) \(P\) is a partial differential operator with polynomial coefficients, globally elliptic and (formally) selfadjoint and \(u\) is a solution of the equation \(Pu=F(u)+f\) with \(F\) a polynomial function; ii) \(P\) is the harmonic oscillator and \(u\) is a solution of the equation \(Pu=F(x,u,\nabla u)+f\), where \(F\) is a polynomial in \(u\) and \(\nabla\) which coefficients are at most affine functions in \(x\). One proves that if \(f\in S_{\nu}^{\mu} (\mathbb{R}^{n})\), \(\mu \geq 1/2, \nu\geq 1/2\) and \(u\in H^{s}(\mathbb{R}^{n})\) for some \(s> n/2\) in case i) (respectively \(s >1+n/2\) in case ii), then \(u\in S_{\nu}^{\text{max}(1,\mu)}(\mathbb{R}^{n})\). The spaces \(S^{\mu}_{\nu}\) are the \(S\)-type spaces introduced in [I. M. Gelfand, G. E. Shilov, Generalized functions II. Spaces of fundamental and generalized functions. New York and London: Academic Press (1968; Zbl 0159.18301)]. In particular, if \(f=0\), then \(u\) has a superexponential decay of order \(2\) and it can be extended to an analytic function in the strip \(\{z\in \mathbb{C}^{n}; | \operatorname{Im}z | <T\}\) for some \(T>0\). Examples of solutions \(u\) which can not be extended to entire functions are provided. The proof of the theorem is based on the careful study of commutator identities involving multiplication operators and partial differentiation operators combined with perturbative methods in \(S\)-type spaces. The paper contains also an elementary proof for the nonperturbed case \((F\equiv 0)\) and \(\mu=\nu\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35J10 Schrödinger operator, Schrödinger equation
35P05 General topics in linear spectral theory for PDEs
35J60 Nonlinear elliptic equations
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

Citations:

Zbl 0159.18301
Full Text: DOI

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1964), Nat. Bureau of Standards: Nat. Bureau of Standards Washington, DC · Zbl 0171.38503
[2] Agmon, S., Lectures on Exponential Decay of Second-Order Elliptic Equations: Bounds on Eigenfunctions of \(N\)-Body Schrödinger Operators, Math. Notes, vol. 29 (1982), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0503.35001
[3] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[4] Avantaggiati, A., S-spaces by means of the behaviour of Hermite-Fourier coefficients, Boll. Unione Mat. Ital. Ser. A Mat. Soc. Cult., 6, 4, 487-495 (1985) · Zbl 0596.46026
[5] Bach, V.; Matte, O., Exponential decay of eigenfunctions of the Bethe-Salpeter operator, Lett. Math. Phys., 55, 1, 53-62 (2001) · Zbl 0991.34074
[6] Biagioni, H. A.; Gramchev, T., Fractional derivative estimates in Gevrey spaces, global regularity and decay for solutions to semilinear equations in \(R^n\), J. Differential Equations, 194, 140-165 (2003) · Zbl 1160.35311
[7] Boggiatto, P.; Buzano, E.; Rodino, L., Global Hypoellipticity and Spectral Theory, Math. Res., vol. 92 (1996), Akademie Verlag: Akademie Verlag Berlin · Zbl 0878.35001
[8] Bona, J.; Li, Y., Decay and analyticity of solitary waves, J. Math. Pures Appl., 76, 377-430 (1997) · Zbl 0878.35098
[9] Bondareva, I.; Shubin, M., Equations of Korteweg-de Vries type in classes of increasing functions, J. Soviet Math., 51, 3, 2323-2332 (1990) · Zbl 0709.35088
[10] M. Cappiello, T. Gramchev, L. Rodino, Exponential decay and regularity for SG-elliptic operators with polynomial coefficients, preprint, 2005; M. Cappiello, T. Gramchev, L. Rodino, Exponential decay and regularity for SG-elliptic operators with polynomial coefficients, preprint, 2005 · Zbl 1387.35167
[11] M. Cappiello, L. Rodino, SG-pseudodifferential operators and Gelfand-Shilov spaces, Rocky Mountain J. Math. 36 (2006), in press; M. Cappiello, L. Rodino, SG-pseudodifferential operators and Gelfand-Shilov spaces, Rocky Mountain J. Math. 36 (2006), in press · Zbl 1158.35111
[12] Coti Zelati, V.; Rabinowitz, P. H., Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, 693-727 (1991) · Zbl 0744.34045
[13] Gelfand, I. M.; Shilov, G. E., Generalized Functions II (1968), Academic Press: Academic Press New York · Zbl 0159.18301
[14] Gramchev, T., Perturbative methods in scales of Banach spaces: applications for Gevrey regularity of solutions to semilinear partial differential equations, Rend. Sem. Mat. Univ. Politec. Torino, 61, 2, 101-134 (2003) · Zbl 1178.35139
[15] Gröchenig, K.; Zimmermann, G., Spaces of test functions via the STFT, J. Funct. Spaces Appl., 2, 1, 24-53 (2004) · Zbl 1069.46021
[16] Helffer, B., Théorie spectrale pour des opérateurs globalement elliptiques, Astérisque, 112 (1984) · Zbl 0541.35002
[17] Helffer, B.; Parisse, B., Comparison of the decay of eigenfunctions for Dirac and Klein-Gordon operators. Applications to the study of the tunneling effect, Ann. Inst. H. Poincaré Phys. Théor., 60, 2, 147-187 (1994) · Zbl 0842.35088
[18] Hislop, P. D.; Sigal, I. M., Introduction to Spectral Theory (1996), Springer-Verlag: Springer-Verlag Berlin · Zbl 0855.47002
[19] T. Kappeller, P. Perry, M. Shubin, P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity, preprint, 2005; T. Kappeller, P. Perry, M. Shubin, P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity, preprint, 2005
[20] Martinez, A., Estimates on complex interactions in phase space, Math. Nachr., 167, 203-254 (1994) · Zbl 0836.35135
[21] Mitjagin, B. S., Nuclearity and other properties of spaces of type S, (Amer. Math. Soc. Transl., Ser. 2, vol. 93 (1970), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 45-59 · Zbl 0206.11904
[22] Nakamura, S., Gaussian decay estimates for the eigenfunctions of magnetic Schrödinger operators, Comm. Partial Differential Equations, 21, 5-6, 993-1006 (1996) · Zbl 0855.35093
[23] Pilipovic, S., Tempered ultradistributions, Boll. Unione Mat. Ital. VII. Ser. B, 2, 2, 235-251 (1988) · Zbl 0657.46030
[24] Pilipovic, S.; Teofanov, N., Pseudodifferential operators on ultramodulation spaces, J. Funct. Anal., 208, 194-228 (2004) · Zbl 1060.47050
[25] Rabier, P. J., Asymptotic behavior of the solutions of linear and quasilinear elliptic equations on \(R^N\), Trans. Amer. Math. Soc., 356, 5, 1889-1907 (2004) · Zbl 1055.35078
[26] Rabier, P. J.; Stuart, C., Exponential decay of the solutions of quasilinear second-order equations and Pohozaev identities, J. Differential Equations, 165, 199-234 (2000) · Zbl 0965.35046
[27] Rabinovich, V. S., Exponential estimates for eigenfunctions of Schrödinger operators with rapidly increasing and discontinuous potentials, Contemp. Math., 364, 225-236 (2004) · Zbl 1082.47041
[28] Shubin, M., Pseudodifferential Operators and the Spectral Theory, Springer Series in Soviet Math. (1987), Springer-Verlag: Springer-Verlag Berlin · Zbl 0616.47040
[29] Sordoni, V., Gaussian decay for the eigenfunctions of a Schrödinger operator with magnetic field constant at infinity, Comm. Partial Differential Equations, 23, 1-2, 223-242 (1998) · Zbl 0898.34077
[30] Teofanov, N., Ultradistributions in time-frequency analysis, (Boggiato, P.; Rodino, L.; Toft, J.; Wong, M. W., Operator Theory: Advances and Applications (2006), Birkhäuser: Birkhäuser Basel), 173-191 · Zbl 1107.46030
[31] Tricomi, F. G., Funzioni speciali (1965), Ed. Tirrenia: Ed. Tirrenia Torino · Zbl 0073.28604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.