×

Negative \(K\)-theory and Chow group of monoid algebras. (English) Zbl 1442.19010

Cortiñas, Guillermo (ed.) et al., \(K\)-theory in algebra, analysis and topology. ICM 2018 satellite school and workshop, La Plata and Buenos Aires, Argentina, July 16–20 and July 23–27, 2018. Providence, RI: American Mathematical Society (AMS). Contemp. Math. 749, 195-224 (2020).
Summary: We show, for a finitely generated partially cancellative torsion-free commutative monoid \(M\), that \(K_i(R)\cong K_i(R[M])\) whenever \(i\leq -d\) and \(R\) is a quasi-excellent \(\mathbb{Q}\)-algebra of Krull dimension \(d\geq 1\). In particular, \(K_i(R[M])=0\) for \(i<-d\). This is a generalization of Weibel’s \(K\)-dimension conjecture to monoid algebras. We show that this generalization fails for \(X[M]\) if \(X\) is not an affine scheme. We also show that the Levine-Weibel Chow group of 0-cycles \(\text{CH}^{LW}_0(k[M])\) vanishes for any finitely generated commutative partially cancellative monoid \(M\) if \(k\) is an algebraically closed field.
For the entire collection see [Zbl 1441.19002].

MSC:

19D50 Computations of higher \(K\)-theory of rings
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
14F35 Homotopy theory and fundamental groups in algebraic geometry
14C15 (Equivariant) Chow groups and rings; motives

References:

[1] Bass, Hyman, Algebraic \(K\)-theory, xx+762 pp. (1968), W. A. Benjamin, Inc., New York-Amsterdam · Zbl 0174.30302
[2] Bruns, Winfried; Gubeladze, Joseph, Polytopes, rings, and \(K\)-theory, Springer Monographs in Mathematics, xiv+461 pp. (2009), Springer, Dordrecht · Zbl 1168.13001 · doi:10.1007/b105283
[3] Corti\~{n}as, G.; Haesemeyer, C.; Schlichting, M.; Weibel, C., Cyclic homology, cdh-cohomology and negative \(K\)-theory, Ann. of Math. (2), 167, 2, 549-573 (2008) · Zbl 1191.19003 · doi:10.4007/annals.2008.167.549
[4] Corti\~{n}as, G.; Haesemeyer, C.; Walker, Mark E.; Weibel, C., The \(K\)-theory of toric varieties, Trans. Amer. Math. Soc., 361, 6, 3325-3341 (2009) · Zbl 1170.19001 · doi:10.1090/S0002-9947-08-04750-8
[5] Corti\~{n}as, G.; Haesemeyer, C.; Walker, Mark E.; Weibel, C., The \(K\)-theory of toric varieties in positive characteristic, J. Topol., 7, 1, 247-286 (2014) · Zbl 1309.14017 · doi:10.1112/jtopol/jtt026
[6] Corti\~{n}as, Guillermo; Haesemeyer, Christian; Walker, Mark E.; Weibel, Charles, Toric varieties, monoid schemes and cdh descent, J. Reine Angew. Math., 698, 1-54 (2015) · Zbl 1331.14050 · doi:10.1515/crelle-2012-0123
[7] Corti\~{n}as, G.; Haesemeyer, C.; Walker, M. E.; Weibel, C. A., The \(K\)-theory of toric schemes over regular rings of mixed characteristic. Singularities, algebraic geometry, commutative algebra, and related topics, 455-479 (2018), Springer, Cham · Zbl 1405.14024
[8] Cossart, Vincent; Piltant, Olivier, Resolution of singularities of threefolds in positive characteristic. II, J. Algebra, 321, 7, 1836-1976 (2009) · Zbl 1173.14012 · doi:10.1016/j.jalgebra.2008.11.030
[9] Fulton, William, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 2, xiv+470 pp. (1998), Springer-Verlag, Berlin · Zbl 0885.14002 · doi:10.1007/978-1-4612-1700-8
[10] Geisser, Thomas; Hesselholt, Lars, On the vanishing of negative \(K\)-groups, Math. Ann., 348, 3, 707-736 (2010) · Zbl 1203.19001 · doi:10.1007/s00208-010-0500-z
[11] Gubeladze, I. Dzh., The Anderson conjecture and a maximal class of monoids over which projective modules are free, Mat. Sb. (N.S.). Math. USSR-Sb., 135(177) 63, 1, 165-180 (1989) · Zbl 0668.13011 · doi:10.1070/SM1989v063n01ABEH003266
[12] Gubeladze, Joseph, Classical algebraic \(K\)-theory of monoid algebras. \(K\)-theory and homological algebra, Tbilisi, 1987-88, Lecture Notes in Math. 1437, 36-94 (1990), Springer, Berlin · Zbl 0731.19001 · doi:10.1007/BFb0086718
[13] Gubeladze, J., Geometric and algebraic representations of commutative cancellative monoids, Proc. A. Razmadze Math. Inst., 113, 31-81 (1995) · Zbl 0871.19001
[14] Gubeladze, Joseph, Nontriviality of \(SK_1(R[M])\), J. Pure Appl. Algebra, 104, 2, 169-190 (1995) · Zbl 0840.19002 · doi:10.1016/0022-4049(94)00130-1
[15] Gubeladze, Joseph, \(K\)-theory of affine toric varieties, Homology Homotopy Appl., 1, 135-145 (1999) · Zbl 0920.19001 · doi:10.4310/hha.1999.v1.n1.a5
[16] Gubeladze, Joseph, The nilpotence conjecture in \(K\)-theory of toric varieties, Invent. Math., 160, 1, 173-216 (2005) · Zbl 1075.14051 · doi:10.1007/s00222-004-0410-3
[17] Gubeladze, Joseph, Global coefficient ring in the nilpotence conjecture, Proc. Amer. Math. Soc., 136, 2, 499-503 (2008) · Zbl 1134.19002 · doi:10.1090/S0002-9939-07-09106-X
[18] Gubeladze, Joseph, Unimodular rows over monoid rings, Adv. Math., 337, 193-215 (2018) · Zbl 1401.19003 · doi:10.1016/j.aim.2018.08.011
[19] Haesemeyer, Christian, Descent properties of homotopy \(K\)-theory, Duke Math. J., 125, 3, 589-620 (2004) · Zbl 1079.19001 · doi:10.1215/S0012-7094-04-12534-5
[20] Hironaka, Heisuke, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) {\bf79} (1964), 109-203; ibid. (2), 79, 205-326 (1964) · Zbl 1420.14031 · doi:10.2307/1970547
[21] Kerz, Moritz; Strunk, Florian, On the vanishing of negative homotopy \(K\)-theory, J. Pure Appl. Algebra, 221, 7, 1641-1644 (2017) · Zbl 1372.19003 · doi:10.1016/j.jpaa.2016.12.021
[22] Kerz, Moritz; Strunk, Florian; Tamme, Georg, Algebraic \(K\)-theory and descent for blow-ups, Invent. Math., 211, 2, 523-577 (2018) · Zbl 1391.19007 · doi:10.1007/s00222-017-0752-2
[23] Krishna, Amalendu, On the negative \(K\)-theory of schemes in finite characteristic, J. Algebra, 322, 6, 2118-2130 (2009) · Zbl 1186.19002 · doi:10.1016/j.jalgebra.2009.05.038
[24] Krishna, Amalendu, An Artin-Rees theorem in \(K\)-theory and applications to zero cycles, J. Algebraic Geom., 19, 3, 555-598 (2010) · Zbl 1193.14010 · doi:10.1090/S1056-3911-09-00521-9
[25] Krishna, Amalendu, Murthy’s conjecture on 0-cycles, Invent. Math., 217, 2, 549-602 (2019) · Zbl 1439.14041 · doi:10.1007/s00222-019-00871-8
[26] Krishna, Amalendu; Sarwar, Husney Parvez, \(K\)-theory of Monoid Algebras and a Qestion of Gubeladze, J. Inst. Math. Jussieu, 18, 5, 1051-1085 (2019) · Zbl 1425.19001 · doi:10.1017/s1474748017000317
[27] Levine, Marc; Weibel, Chuck, Zero cycles and complete intersections on singular varieties, J. Reine Angew. Math., 359, 106-120 (1985) · Zbl 0555.14004
[28] Matsumura, Hideyuki, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, xiv+320 pp. (1986), Cambridge University Press, Cambridge · Zbl 0603.13001
[29] Milnor, John, Introduction to algebraic \(K\)-theory, xiii+184 pp. (1971), Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo · Zbl 0237.18005
[30] Murthy, M. Pavaman, Zero cycles and projective modules, Ann. of Math. (2), 140, 2, 405-434 (1994) · Zbl 0839.13007 · doi:10.2307/2118605
[31] Swan, Richard G., Gubeladze’s proof of Anderson’s conjecture. Azumaya algebras, actions, and modules, Bloomington, IN, 1990, Contemp. Math. 124, 215-250 (1992), Amer. Math. Soc., Providence, RI · Zbl 0742.13005 · doi:10.1090/conm/124/1144038
[32] Temkin, Michael, Desingularization of quasi-excellent schemes in characteristic zero, Adv. Math., 219, 2, 488-522 (2008) · Zbl 1146.14009 · doi:10.1016/j.aim.2008.05.006
[33] Thomason, R. W.; Trobaugh, Thomas, Higher algebraic \(K\)-theory of schemes and of derived categories. The Grothendieck Festschrift, Vol. III, Progr. Math. 88, 247-435 (1990), Birkh\"{a}user Boston, Boston, MA · doi:10.1007/978-0-8176-4576-2\_10
[34] Vaser\v{s}te\u{\i}n, L. N., On the stabilization of the general linear group over a ring, Math. USSR-Sb., 8, 383-400 (1969) · Zbl 0238.20057
[35] Vorst, Ton, The Serre problem for discrete Hodge algebras, Math. Z., 184, 3, 425-433 (1983) · Zbl 0504.13008 · doi:10.1007/BF01163515
[36] Weibel, Charles A., \(K\)-theory and analytic isomorphisms, Invent. Math., 61, 2, 177-197 (1980) · Zbl 0437.13009 · doi:10.1007/BF01390120
[37] Weibel, Charles A., Homotopy algebraic \(K\)-theory. Algebraic \(K\)-theory and algebraic number theory, Honolulu, HI, 1987, Contemp. Math. 83, 461-488 (1989), Amer. Math. Soc., Providence, RI · Zbl 0669.18007 · doi:10.1090/conm/083/991991
[38] Weibel, Charles, The negative \(K\)-theory of normal surfaces, Duke Math. J., 108, 1, 1-35 (2001) · Zbl 1092.14014 · doi:10.1215/S0012-7094-01-10811-9
[39] Weibel, Charles A., The \(K\)-book, Graduate Studies in Mathematics 145, xii+618 pp. (2013), American Mathematical Society, Providence, RI · Zbl 1273.19001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.