×

Descent properties of homotopy \(K\)-theory. (English) Zbl 1079.19001

Let \(KH\) be Weibel’s homotopy invariant version of \(K\)-theory agreeing with \(K\)-theory for smooth schemes. In the paper under review the author shows that \(KH\) satisfies \(cdh\)-descent for essentially finite schemes \(X\) over a field \(F\) of characteristic zero. As a consequence we have a spectral sequence \[ H^p(X,a_{cdh}K_{-q})\rightarrow KH_{-p-q}(X). \] Here \(a_{cdh}K_{-q}\) is the \(cdh\)-sheafification of the \(K\)-theory presheaf.
Reformulating the problem, the author proves that the associated presheaf \(\mathcal{KH}\) of spectra on \(Sch/k\) is locally fibrant in Jardine’s local \(cdh\)-model structure. Note that \(K\)-theory and \(KH\)-theory are locally equivalent. Letting \(\mathcal K^{cdh}\) be a common local fibrant replacement of \(\mathcal K\) and \(\mathcal{KH}\), the goal is to show that \(\mathcal{KH}(X)\to \mathcal K^{cdh}(X)\) is a weak equivalence. This is done in two steps.
First the equivalence is established for hypersurfaces by choosing a resolution of singularities and factoring it into blow-ups with regularly embedded centers and finite abstract blow-ups. Equivalence for the first of these is established in the paper under review, and equivalence for the latter has been shown by Weibel.
The second step in the proof of the theorem is reducing the general case to the hypersurface case, which is done by induction on the dimension. One needs only descent for closed covers and invariance under infinitesimal extensions.
In the last chapter some evidence for a conjecture of Weibel concerning negative \(K\)-theory is given.
The paper is based on the author’s thesis.

MSC:

19D35 Negative \(K\)-theory, NK and Nil
19E08 \(K\)-theory of schemes
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
Full Text: DOI

References:

[1] H. Bass, Algebraic \(K\) -Theory, Benjamin, New York, 1968. · Zbl 0174.30302
[2] P. Berthelot, A. Grothendieck, and L. Illusie, Théorie des intersections et théorème de Riemann-Roch , Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Lecture Notes in Math. 225 , Springer, Berlin, 1971. · Zbl 0218.14001
[3] B. A. Blander, Local projective model structures on simplicial presheaves , \(K\)-Theory 24 (2001), 283–301. · Zbl 1073.14517 · doi:10.1023/A:1013302313123
[4] B. H. Dayton and C. A. Weibel, \(K\) -theory of hyperplanes, Trans. Amer. Math. Soc. 257 (1980), 119–141. JSTOR: · Zbl 0424.18011 · doi:10.2307/1998128
[5] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry , Grad. Texts in Math. 150 , Springer, New York, 1995. · Zbl 0819.13001
[6] E. M. Friedlander and A. Suslin, The spectral sequence relating algebraic \(K\) -theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), 773–875. · Zbl 1047.14011 · doi:10.1016/S0012-9593(02)01109-6
[7] S. C. Geller and C. A. Weibel, \(K_1(A,\,B,\,I)\), J. Reine Angew. Math. 342 (1983), 12–34.
[8] H. Gillet and C. Soulé, Descent, motives and \(K\) -theory, J. Reine Angew. Math. 478 (1996), 127–176. · Zbl 0863.19002 · doi:10.1515/crll.1996.478.127
[9] M. Herrmann, S. Ikeda, and U. Orbanz, Equimultiplicity and Blowing Up: An Algebraic Study , appendix by B. Moonen, Springer, Berlin, 1988. · Zbl 0649.13011
[10] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II , Ann. of Math. (2) 79 (1964), 109–203.; 205–326. JSTOR: · Zbl 0122.38603 · doi:10.2307/1970486
[11] J. F. Jardine, Stable homotopy theory of simplicial presheaves , Canad. J. Math. 39 (1987), 733–747. · Zbl 0645.18006 · doi:10.4153/CJM-1987-035-8
[12] ——–, Generalized Étale Cohomology Theories , Progr. Math. 146 , Birkhäuser, Basel, 1997. · Zbl 0868.19003
[13] –. –. –. –., Motivic symmetric spectra , Doc. Math. 5 (2000), 445–553. · Zbl 0969.19004
[14] F. Morel and V. Voevodsky, \(\mathbf A^ 1\) -homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143. · Zbl 0983.14007 · doi:10.1007/BF02698831
[15] D. G. Northcott and D. Rees, Reductions of ideals in local rings , Proc. Cambridge Philos. Soc. 50 (1954), 145–158. · Zbl 0057.02601 · doi:10.1017/S0305004100029194
[16] C. Pedrini and C. Weibel, “Divisibility in the Chow group of zero-cycles on a singular surface” in \(K\)-Theory (Strasbourg, France, 1992) , Astérisque 226 (1994), 10–11., 371–409. · Zbl 0827.14003
[17] A. Suslin and V. Voevodsky, “Bloch-Kato conjecture and motivic cohomology with finite coefficients” in The Arithmetic and Geometry of Algebraic Cycles (Banff, Canada, 1998) , NATO Sci. Ser. C Math. Phys. Sci. 548 , Kluwer, Dordrecht, 2000, 117–189. · Zbl 1005.19001
[18] R. W. Thomason, Les \(K\) -groupes d’un schéma éclaté et une formule d’intersection excédentaire, Invent. Math. 112 (1993), 195–215. · Zbl 0816.19004 · doi:10.1007/BF01232430
[19] R. W. Thomason and T. Trobaugh, “Higher algebraic \(K\)-theory of schemes and of derived categories” in The Grothendieck Festschrift, Vol. III , Progr. Math. 88 , Birkhäuser, Boston, 1990, 247–435. · Zbl 0731.14001
[20] V. Voevodsky, “Cohomological theory of presheaves with transfers” in Cycles, Transfers, and Motivic Homology Theories , Ann. of Math. Stud. 143 , Princeton Univ. Press, Princeton, 2000, 87–137. · Zbl 1019.14010
[21] ——–, Homotopy theory of simplicial sheaves in completely decomposable topologies , preprint, 2000, http://www.math.uiuc.edu/K-theory/0443/
[22] ——–, Unstable motivic homotopy categories in Nisnevich and cdh-topologies , preprint, 2000, http://www.math.uiuc.edu/K-theory/0444/
[23] C. A. Weibel, \(K\) -theory and analytic isomorphisms, Invent. Math. 61 (1980), 177–197. · Zbl 0437.13009 · doi:10.1007/BF01390120
[24] –. –. –. –., “Homotopy algebraic \(K\)-theory” in Algebraic \(K\) -Theory and Number Theory, Contemp. Math. 83 , Amer. Math. Soc., Providence, 1989, 461–488.
[25] –. –. –. –., The negative \(K\) -theory of normal surfaces, Duke Math. J. 108 (2001), 1–35. · Zbl 1092.14014 · doi:10.1215/S0012-7094-01-10811-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.