×

A stabilized mixed discontinuous Galerkin formulation for double porosity/permeability model. (English) Zbl 1441.76062

Summary: Modeling flow through porous media with multiple pore-networks has now become an active area of research due to recent technological endeavors like geological carbon sequestration and recovery of hydrocarbons from tight rock formations. Herein, we consider the double porosity/permeability (DPP) model, which describes the flow of a single-phase incompressible fluid through a porous medium exhibiting two dominant pore-networks with a possibility of mass transfer across them. We present a stable mixed discontinuous Galerkin (DG) formulation for the DPP model. The formulation enjoys several attractive features. These include: (i) Equal-order interpolation for all the field variables (which is the most convenient for computer implementation) is stable under the proposed formulation. (ii) The stabilization terms are residual-based, and the stabilization parameters do not contain any mesh-dependent parameters. (iii) The formulation is theoretically shown to be consistent, stable, and hence convergent. (iv) The formulation supports non-conforming discretization and distorted meshes. (v) The DG formulation has improved element-wise (local) mass balance compared to the corresponding continuous formulation. (vi) The proposed formulation can capture physical instabilities in coupled flow and transport problems under the DPP model.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage

References:

[1] Joodat, S. H.S.; Nakshatrala, K. B.; Ballarini, R., Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions, Comput. Methods Appl. Mech. Engrg., 337, 632-676 (2018) · Zbl 1440.76144
[2] Nakshatrala, K. B.; Joodat, H. S.H.; Ballarini, R., Modeling flow in porous media with double porosity/permeability: Mathematical model, properties, and analytical solutions, J. Appl. Mech., 85, 081009 (2018) · Zbl 1440.76144
[3] Wilbraham, H., On a certain periodic function, Camb. Dublin Math. J., 3, 198, 1848 (1848)
[4] Gibbs, J. W., Fourier’s series, Nature, 59, 1522, 200 (1898) · JFM 30.0240.04
[5] Gibbs, J. W., Fourier’s series, Nature, 59, 1539, 606 (1899) · JFM 30.0240.04
[6] Foster, J.; Richards, F. B., The gibbs phenomenon for piecewise-linear approximation, Amer. Math. Monthly, 98, 1, 47-49 (1991) · Zbl 0735.42001
[7] Hughes, T. J.R.; Masud, A.; Wan, J., A stabilized mixed discontinuous Galerkin method for Darcy flow, Comput. Methods Appl. Mech. Engrg., 195, 3347-3381 (2006) · Zbl 1120.76040
[8] Brezzi, F.; Fortin, M., (Mixed and Hybrid Finite Element Methods. Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15 (1991), Springer-Verlag: Springer-Verlag New York) · Zbl 0788.73002
[9] Raviart, P. A.; Thomas, J. M., A mixed finite element method for 2-nd order elliptic problems, (Mathematical Aspects of the Finite Element Method (1977), Springer-Verlag: Springer-Verlag New York), 292-315 · Zbl 0362.65089
[10] Nédélec, J.-C., Mixed finite elements in \(R^3\), Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069
[11] Brezzi, F.; Douglas, J.; Marini, L. D., Two families of mixed elements for second order elliptic problems, Numer. Math., 47, 217-235 (1985) · Zbl 0599.65072
[12] Brezzi, F.; Douglas, J.; Fortin, M.; Marini, L. D., Efficient rectangular mixed finite elements in two and three space variables, Math. Model. Numer. Anal., 21, 581-604 (1987) · Zbl 0689.65065
[13] Crouzeix, M.; Raviart, P.-A., Conforming and nonconforming finite element methods for solving the stationary stokes equations i. Revue française d’automatique informatique recherche opérationnelle, Mathématique, 7, R3, 33-75 (1973)
[14] Rivière, B.; Wheeler, M. F., Discontinuous Galerkin methods for flow and transport problems in porous media, Int. J. Numer. Methods Biomed. Eng., 18, 63-68 (2002) · Zbl 0996.76056
[15] Cockburn, B., Discontinuous Galerkin methods, J. Appl. Math. Mech. / Z. Angew. Math. Mech., 83, 731-754 (2003) · Zbl 1036.65079
[16] Li, J.; Rivière, B., Numerical solutions of the incompressible miscible displacement equations in heterogeneous media, Comput. Methods Appl. Mech. Engrg., 292, 107-121 (2015) · Zbl 1423.76254
[17] Li, J.; Rivière, B., Numerical modeling of miscible viscous fingering instabilities by high-order methods, Transp. Porous Media, 113, 607-628 (2016)
[18] Rivière, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation (2008), SIAM · Zbl 1153.65112
[19] Lions, J. L., Problemes aux limites non homogenesa donées irrégulieres: Une méthode d’approximation, (Numerical Analysis of Partial Differential Equations (CIME 2 Ciclo, Ispra, 1967), Edizioni Cremonese, Rome (1968)), 283-292 · Zbl 0235.65074
[20] Nitsche, J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, (AbhandLungen aus dem Mathematischen Seminar der Universität Hamburg, Vol. 36 (1971), Springer), 9-15 · Zbl 0229.65079
[21] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, 1973.; W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479, 1973.
[22] Brezzi, F.; Marini, L. D.; Süli, E., Discontinuous Galerkin methods for first-order hyperbolic problems, Math. Models Methods Appl. Sci., 14, 1893-1903 (2004) · Zbl 1070.65117
[23] Pal, R. K.; Abedi, R.; Madhukar, A.; Haber, R. B., Adaptive spacetime discontinuous Galerkin method for hyperbolic advection – diffusion with a non-negativity constraint, Internat. J. Numer. Methods Engrg., 105, 963-989 (2016) · Zbl 07868671
[24] Douglas, J.; Dupont, T., Interior penalty procedures for elliptic and parabolic Galerkin methods, Comput. Methods Appl. Sci., 207-216 (1976)
[25] Rivière, B.; Wheeler, M. F.; Girault, V., Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I, Comput. Geosci., 3, 337-360 (1999) · Zbl 0951.65108
[26] Rusten, T.; Vassilevski, P.; Winther, R., Interior penalty preconditioners for mixed finite element approximations of elliptic problems, Math. Comput. Amer. Math. Soc., 65, 447-466 (1996) · Zbl 0857.65117
[27] Arnold, D. N.; Brezzi, F.; Cockburn, B.; Marini, L. D., Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39, 1749-1779b (2002) · Zbl 1008.65080
[28] Barrios, T. P.; Bustinzal, R., An augmented discontinuous Galerkin method for elliptic problems, C. R. Math., 344, 53-58 (2007) · Zbl 1109.65098
[29] Cockburn, B.; Guzmán, J.; Wang, H., Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp., 78, 1-24b (2009) · Zbl 1198.65194
[30] Kulkarni, D. V.; Rovas, D. V.; Tortorelli, D. A., Discontinuous Galerkin framework for adaptive solution of parabolic problems, Internat. J. Numer. Methods Engrg., 70, 1-24 (2007) · Zbl 1194.65115
[31] Nakshatrala, P. B.; Nakshatrala, K. B.; Tortorelli, D. A., A time-staggered partitioned coupling algorithm for transient heat conduction, Internat. J. Numer. Methods Engrg., 78, 12, 1387-1406 (2009) · Zbl 1183.80105
[32] Palaniappan, J.; Haber, R. B.; Jerrard, R. L., A spacetime discontinuous Galerkin method for scalar conservation laws, Comput. Methods Appl. Mech. Engrg., 193, 33-35, 3607-3631 (2004) · Zbl 1077.65108
[33] Abedi, R.; Petracovici, B.; Haber, R. B., A space – time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance, Comput. Methods Appl. Mech. Engrg., 195, 25-28, 3247-3273 (2006) · Zbl 1130.74044
[34] Cockburn, B.; Shu, C., Runge – kutta discontinuous galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[35] Castillo, P.; Cockburn, B.; Perugia, I.; Schötzau, D., An a priori error analysis of the local discontinuous galerkin method for elliptic problems, SIAM J. Numer. Anal., 38, 5, 1676-1706 (2000) · Zbl 0987.65111
[36] Güzey, S.; Cockburn, B.; Stolarski, H. K., The embedded discontinuous galerkin method: application to linear shell problems, Internat. J. Numer. Methods Engrg., 70, 7, 757-790 (2007) · Zbl 1194.74403
[37] Peraire, J.; Persson, P. O., The compact discontinuous Galerkin (CDG) method for elliptic problems, SIAM J. Sci. Comput., 30, 4, 1806-1824 (2008) · Zbl 1167.65436
[38] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous galerkin, mixed, and continuous galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 2, 1319-1365a (2009) · Zbl 1205.65312
[39] Badia, S.; Codina, R., Stabilized continuous and discontinuous Galerkin techniques for Darcy flow, Comput. Methods Appl. Mech. Engrg., 199, 1654-1667 (2010) · Zbl 1231.76134
[40] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2007), Cambridge University Press · Zbl 1118.65117
[41] Dolejší, V.; Feistauer, M., Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow (2015), Springer · Zbl 1401.76003
[42] Evans, L. C., Partial Differential Equations (1998), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 0902.35002
[43] Verfürth, R., A Posteriori Error Estimation Techniques for Finite Element Methods (2013), Oxford Science Publications: Oxford Science Publications New Jersey · Zbl 1279.65127
[44] Arnold, D. N., An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19, 742-760 (1982) · Zbl 0482.65060
[45] Di Pietro, D. A.; Ern, A., Mathematical Aspects of Discontinuous Galerkin Methods, Vol. 69 (2011), Springer Science & Business Media
[46] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 267-279 (1997) · Zbl 0871.76040
[47] Brezzi, F.; Hughes, T. J.R.; Marini, L. D.; Masud, A., Mixed discontinuous Galerkin method for Darcy flow, SIAM J. Sci. Comput., 22, 119-145 (2005) · Zbl 1103.76031
[48] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer-Verlag: Springer-Verlag New York · Zbl 0804.65101
[49] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Dover Publications, Inc.: Dover Publications, Inc. New York
[50] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2007), Springer Science & Business Media
[51] Babuška, I.; Strouboulis, T., The Finite Element Method and Its Reliability (2001), Oxford University Press · Zbl 0997.74069
[52] Babuška, I.; Dorr, M. R., Error estimates for the combined \(h\) and \(p\) versions of the finite element method, Numer. Math., 37, 257-277 (1981) · Zbl 0487.65058
[53] Remacle, J. F.; Flaherty, J. E.; Shephard, M. S., An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev., 45, 53-72 (2003) · Zbl 1127.65323
[54] Canouet, N.; Fezoui, L.; Piperno, S., Discontinuous Galerkin time-domain solution of Maxwell’s equations on locally-refined nonconforming Cartesian grids, COMPEL- Int. J. Comput. Math. Electr. Electron. Eng., 24, 1381-1401 (2005) · Zbl 1079.78028
[55] Hesthaven, J. S.; Warburton, T., High – order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, Philos. Trans. Roy. Soc. Lond. A Math. Phys. Eng. Sci., 362, 493-524 (2004) · Zbl 1078.78014
[56] Gupta, A. K., A finite element for transition from a fine to a coarse grid, Internat. J. Numer. Methods Engrg., 12, 35-45 (1978) · Zbl 0369.73073
[57] Morton, D. J.; Tyler, J. M.; Dorroh, J. R., A new 3D finite element for adaptive \(h\)-refinement in 1-irregular meshes, Internat. J. Numer. Methods Engrg., 38, 3989-4008 (1995) · Zbl 0838.76042
[58] Ainsworth, M.; Senior, B., Aspects of an adaptive \(h p\)-finite element method: Adaptive strategy, conforming approximation and efficient solvers, Comput. Methods Appl. Mech. Engrg., 150, 65-87 (1997) · Zbl 0906.73057
[59] Bank, R. E.; Sherman, A. H.; Weiser, A., Some refinement algorithms and data structures for regular local mesh refinement, Sci. Comput. Appl. Math. Comput. Phys. Sci., 1, 3-17 (1983)
[60] Oden, J. T.; Demkowicz, L.; Rachowicz, W.; Westermann, T. A., Toward a universal hp adaptive finite element strategy, Part 2. A posteriori error estimation, Comput. Methods Appl. Mech. Engrg., 77, 1-2, 113-180 (1989) · Zbl 0723.73075
[61] Fries, T. P.; Byfut, A.; Alizada, A.; Cheng, K. W.; Schröder, A., Hanging nodes and XFEM, Internat. J. Numer. Methods Engrg., 86, 404-430 (2011) · Zbl 1216.74020
[62] Burstedde, C.; Ghattas, O.; Gurnis, M.; Stadler, G.; Tan, E.; Tu, T.; Wilcox, L. C.; Zhong, H., Scalable adaptive mantle convection simulation on petascale supercomputers, (Proceedings of the 2008 ACM/IEEE Conference on Supercomputing (2008), IEEE Press), 62
[63] Kopera, M. A.; Giraldo, G. X., Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations, J. Comput. Phys., 275, 92-117 (2014) · Zbl 1349.76226
[64] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 508-532 (2002) · Zbl 1057.76033
[65] Karniadakis, G.; Sherwin, S., Spectral/hp Element Methods for Computational Fluid Dynamics (2013), Oxford University Press: Oxford University Press New York · Zbl 1256.76003
[66] Arnold, D.; Boffi, Daniele D.; Falk, R., Approximation by quadrilateral finite elements, Math. Comp., 71, 239, 909-922a (2002) · Zbl 0993.65125
[67] Hughes, T. J.R.; Engel, G.; Mazzei, L.; Larson, M. G., The continuous Galerkin method is locally conservative, J. Comput. Phys., 163, 467-488 (2000) · Zbl 0969.65104
[68] Turner, D. Z.; Nakshatrala, K. B.; Martinez, M. J.; Notz, P. K., Modeling subsurface water resource systems involving heterogeneous porous media using the variational multiscale formulation, J. Hydrol., 428, 1-14 (2012)
[69] Drazin, P. G., Introduction to Hydrodynamic Stability (2002), Cambridge University Press: Cambridge University Press Cambridge, U.K. · Zbl 0997.76001
[70] Homsy, G. M., Viscous fingering in porous media, Annu. Rev. Fluid Mech., 19, 271-311 (1987)
[71] Saffman, P. G.; Taylor, G., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci., 245, 312-329 (1958) · Zbl 0086.41603
[72] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[73] COMSOL Java API Reference Guide, Version 4.3. COMSOL, Inc. Burlington, Massachusetts, www.comsol.com; COMSOL Java API Reference Guide, Version 4.3. COMSOL, Inc. Burlington, Massachusetts, www.comsol.com
[74] Rathgeber, F.; Ham, D. A.; Mitchell, L.; Lange, M.; Luporini, F.; McRae, A. T.T.; Bercea, G. T.; Markall, G. R.; Kelly, P. H.J., Firedrake: automating the finite element method by composing abstractions, ACM Trans. Math. Software (TOMS), 43, 24 (2017) · Zbl 1396.65144
[75] Luporini, F.; Varbanescu, A. L.; Rathgeber, F.; Bercea, G. T.; Ramanujam, J.; Ham, D. A.; Kelly, P. H.J., Cross-loop optimization of arithmetic intensity for finite element local assembly, ACM Trans. Archit. Code Optim. (TACO), 11, 57 (2015)
[76] Logg, A.; Mardal, K. A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Vol. 84 (2012), Springer Science & Business Media · Zbl 1247.65105
[77] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M. E.; Wells, G. N., The FEniCC project version 1.5, Arch. Numer. Software, 3, 9-23 (2015)
[78] Ayachit, U., The ParaView Guide: A Parallel Visualization Application (2015), Kitware
[79] Childs, H.; Brugger, E.; Whitlock, B.; Meredith, J.; Ahern, S.; Pugmire, D.; Biagas, K.; Miller, M.; Harrison, C.; Weber, G. H.; Krishnan, H.; Fogal, T.; Sanderson, A.; Garth, C.; Bethel, E. W.; Camp, D.; Rübel, O.; Durant, M.; Favre, J. M.; Navrátil, P., VisIt: An end-user tool for visualizing and analyzing very large data, (High Performance Visualization-Enabling Extreme-Scale Scientific Insight (2012)), 357-372
[80] Geuzaine, C.; Remacle, J. F., Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 1309-1331 (2009) · Zbl 1176.74181
[81] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40, 9 (2014) · Zbl 1308.65175
[82] Logg, A.; Wells, G. N., DOLFIN: Automated finite element computing, ACM Trans. Math. Software (TOMS), 37, 20 (2010) · Zbl 1364.65254
[83] Logg, A.; Wells, G. N.; Hake, J., DOLFIN: A C++/Python finite element library, (Automated Solution of Differential Equations by the Finite Element Method (2012), Springer), 173-225
[84] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.; S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, H. Zhang, PETSc users manual. Technical Report ANL-95/11 - Revision 3.7, Argonne National Laboratory, 2016.
[85] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J. Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41 (2001) · Zbl 0992.65018
[86] Davis, T. A., Algorithm 832: UMFPACK V4. 3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software (TOMS), 30, 196-199 (2004) · Zbl 1072.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.