×

Toward a universal h-p adaptive finite element strategy. II: A posteriori error estimation. (English) Zbl 0723.73075

The present article is the second one of a trilogy of papers [see the foregoing and the following entry (Zbl 0723.73074; Zbl 0723.73076)] on the development of a adaptive h-p version of the finite element method for the solution of linear elliptic boundary-value problems (BVPs) characterized by general elliptic systems of partial differential equations.
In Part 2 of the presentation, the authors address the question of a posteriori error estimation of the h-p finite element schemes and furthermore analyze and experiment with five methods for elliptic BVPs. These techniques are referred to as the residual estimation method, the duality method, the subdomain-residual method, a method based on interpolation theories, and a post-processing method. In particular, element residual methods (1) are based on the computation of the residual over each element using the data in special elementwise BVPs for the local error \(e_ h\). Duality methods (2) are valid for self-adjoint elliptic problems using the duality theory of convex optimization to derive upper and lower bounds of the element errors. Subdomain-residual methods (3) formulate the local error in a given element over a patch of elements surrounding the element. Interpolation methods (4) use the interpolation theory of finite elements in Sobolev norms to produce rapid estimates of the local error over individual elements and, finally, post- processing methods (5) estimate the error by comparing a post-processed version of the approximate solution with the approximate solution itself.
The different methods of residual estimation are designed to be used repeatedly during the evolution of a changing h-p mesh. A lot of numerical examples illustrate the efficiency of the methods.
Reviewer: W.Ehlers (Essen)

MSC:

74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
Full Text: DOI

References:

[1] Demkowizc, L.; Oden, J. T.; Rachowicz, W.; Hardy, O., Toward a universal \(h-p\) adaptive finite element strategy, Part 1. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 79-112 (1989) · Zbl 0723.73074
[2] Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068
[3] Babuška, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 4, 736-753 (1978) · Zbl 0398.65069
[4] Babuška, I.; Rheinboldt, W. C., Reliable error estimation and mesh adaptation for the finite element method, (Oden, J. T., Computational Methods in Nonlinear Mechanics (1980), North Holland: North Holland New York), 67-108 · Zbl 0451.65078
[5] Gui, W.; Babuška, I., The \(h, p and h-p\) versions of the finite element method in one dimension. Part 1. The error analysis of the \(p\)-version. Part 2. The error analysis of the \(h- and h-p\) versions. Part 3. The adaptive \(h-p\) version, Numer. Math., 49, 659-683 (1986) · Zbl 0614.65090
[6] Guo, B.; Babuška, I., The \(h-p\) version of the finite element method. Part 1. The basic approximation results. Part 2. General results and applications, Comput. Mech., 1, 203-220 (1986) · Zbl 0634.73059
[7] Babuška, I.; Guo, B., The \(h-p\) version of the finite element method for problems with nonhomogeneous essential boundary conditions, Comput. Methods Appl. Mech. Engrg., 74, 1-28 (1989) · Zbl 0723.73077
[8] Bank, R. E., Analysis of local a posteriori error estimates for elliptic problems, (Babuška, I.; Zienkiewicz, O. C.; Gago, J.; Oliveira, E. R.A., Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), Wiley and Sons: Wiley and Sons Chichester), 119-128
[9] Bank, R. E.; Weiser, A., Some a posteriori error estimates for elliptic partial differential equations, Math. Comput., 44, 170, 283-301 (1985) · Zbl 0569.65079
[10] Oden, J. T.; Demkowicz, L.; Strouboulis, T.; Devloo, Ph., Adaptive methods for problems in solid and fluid mechanics, (Babuška, I.; Zienkiewicz, O. C.; Gago, J.; Oliviera, E. R.A., Accuracy Estimates and Adaptive Refinements in Finite Element Computations (1986), Wiley and Sons: Wiley and Sons Chichester), 249-280
[11] Demkowicz, L.; Oden, J. T.; Strouboulis, T., Adaptive finite element methods for flow problems with moving boundaries. Part I. Variational principles and a posteriori estimates, Comput. Methods Appl. Mech. Engrg., 46, 217-251 (1984) · Zbl 0583.76025
[12] Oden, J. T.; Demkowicz, L., Advances in adaptive improvements: A survey of adaptive finite element methods in computational mechanics, (Noor, A. K.; Oden, J. T., State-of-the-Art Surveys in Computational Mechanics (1988), ASME: ASME New York) · Zbl 0602.76097
[13] Ekeland, I.; Teman, R., Convex Analysis and Variational Problems (1976), North-Holland: North-Holland Amsterdam · Zbl 0322.90046
[14] Synge, J. L., The Hypercircle in Mathematical Physics (1957), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0079.13802
[15] Demkowicz, L.; Devloo, Ph.; Oden, J. T., On an \(h\)-type mesh refinement strategy based on a minimization of interpolation error, Comput. Methods Appl. Mech. Engrg., 53, 3, 67-89 (1985) · Zbl 0556.73081
[16] Demkowicz, L.; Oden, J. T., On a mesh optimization based on a minimization of interpolation error, Internat. J. Engrg. Sci., 24, 1, 55-68 (1986) · Zbl 0591.65009
[17] Oden, J. T.; Strouboulis, T.; Devloo, Ph., Adaptive finite element methods for high-speed compressible flows, Internat. J. Numer. Methods Fluids, 7, 11, 1211-1228 (1987)
[18] Oden, J. T.; Strouboulis, T.; Devloo, Ph., Adaptive finite element methods for the analysis of inviscid compressible flow. I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes, Comput. Methods Appl. Mech. Engrg., 59, 3, 327-362 (1986) · Zbl 0593.76080
[19] Babuška, I.; Suri, M., The \(p\)-version of the finite element method for constraint boundary conditions, (Technical Note BN-1064 (April 1987), Institute for Physical Science and Technology) · Zbl 0655.65126
[20] Babuška, I.; Suri, M., The treatment of nonhomogeneous Dirichlet boundary conditions by the \(p\)-version of the finite element method (1987), Preprint · Zbl 0673.65066
[21] Babuška, I.; Suri, M., The \(h-p\) version of the finite element method with quasiuniform meshes, Math. Model. and Numer. Anal., 21, 2, 199-238 (1987) · Zbl 0623.65113
[22] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction (1976), Springer: Springer New York · Zbl 0344.46071
[23] Lions, J. L.; Magenes, E., (Nonhomogeneous Boundary Value Problems and Applications, Vol. I (1972), Springer: Springer New York) · Zbl 0223.35039
[24] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland Amsterdam · Zbl 0445.73043
[25] Oden, J. T., Qualitative Methods in Nonlinear Mechanics (1986), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0578.70001
[26] Oden, J. T.; Carey, G. F., Finite Elements: Mathematical Aspects (1983), Prentice-Hall: Prentice-Hall Englewood Cliffs · Zbl 0496.65055
[27] Bass, J. M.; Oden, J. T., Adaptive finite element methods for a class of evolution problems in viscoplasticity, Internat. J. Engrg. Sci., 25, 6, 623-653 (1987) · Zbl 0612.73072
[28] Devloo, Ph.; Oden, J. T.; Strouboulis, T., Implementation of an Adaptive Refinement Technique for the SUPG algorithm, Comput. Methods Appl. Mech. Engrg., 61, 339-358 (1987) · Zbl 0596.73066
[29] Babuška, I.; Szabo, B. A.; Katz, I. N., The \(p\)-version of the finite element method, SIAM J. Numer. Anal., 18, 515-545 (1981) · Zbl 0487.65059
[30] Babuška, I.; Dorr, M. R., Error estimates for the combined \(h and p\) versions of finite element method, Numer. Math., 37, 252-277 (1981) · Zbl 0487.65058
[31] Suri, M., The \(p\)-version of the finite element method for elliptic problems, (Vichnevetsky, R.; Stepleman, R. S., Advances in Computer Methods for Partial Differential Equations, VI (1987)), Publ. IMACS · Zbl 0783.65076
[32] Babuška, I.; Suri, M., The optimal convergence rate of the \(p\)-version of the finite element method, SIAM J. Numer. Anal., 24, 4, 750-776 (1987) · Zbl 0637.65103
[33] Aubin, J. P.; Burhard, F. G., Some aspects of the method of the hypercircle applied to elliptic variational problems, (Hubbard, B., SYNSPADE 1970 (1971), Academic Press: Academic Press New York) · Zbl 0264.65069
[34] Sander, G.; de Veubeke, B. Fraeijs, Upper and lower bounds to structural deformations by dual analysis in finite elements, (Technical Report AFFDL-TR-66-199 (1967), Air Force Flight Dynamics Laboratory: Air Force Flight Dynamics Laboratory Ohio)
[35] Demkowicz, L.; Swierczek, M., An adaptive finite element method for a class of variational inequalities, (Proc. Italian-Polish Symposium of Continuum Mechanics. Proc. Italian-Polish Symposium of Continuum Mechanics, Bologna (1987))
[36] Babuška, I.; Miller, A., The post-processing approach in the finite element method—Part 1. Calculation of displacements, stresses and other higher derivatives of the displacements, Internat. J. Numer. Methods Engrg., 20, 1085-1109 (1984) · Zbl 0535.73052
[37] Demkowicz, L.; Oden, J. T., Extraction methods for second derivatives in finite element approximation of linear elasticity problems, Commun. Appl. Numer. Methods, 137-139 (1985) · Zbl 0589.73075
[38] Bramble, T. H.; Shatz, A. H., Higher order local accuracy by averaging in the finite element methods, Math. Comp., 31, 137, 94-111 (1977) · Zbl 0353.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.