×

Strong discontinuity embedded approach with standard SOS formulation: element formulation, energy-based crack-tracking strategy, and validations. (English) Zbl 1423.74851

Summary: The Strong Discontinuity embedded Approach (SDA) has proved to be a robust numerical method for simulating fracture of quasi-brittle materials such as glass and concrete. Three different numerical formulations are used in the SDA: (i) Statically Optimal Symmetric (SOS), (ii) Kinematically Optimal Symmetric (KOS), (iii) Statically and Kinematically Optimal Nonsymmetric (SKON). While the SOS formulation (standard version) of the SDA is simple for coding and provides good numerical stability (considering standard Galerkin method), several researchers have pointed out that this formulation encounters serious stress-locking. In this paper, an SOS formulation of the SDA is presented, considering elements with linear and quadratic interpolation for the displacement field. The performance of the proposed model of crack simulation is investigated by re-analysis of a pulling test, a three-point bending test, and an L-shaped panel with prescribed crack paths. The obtained results show that elements with linear interpolation encounter significant stress-locking, whereas elements with quadratic interpolation give good results without locking. Based on the eight-node quadrilateral element, which showed the best performance in the aforementioned re-analysis of the tests, an energy-based crack-tracking strategy, originally used in the framework of the XFEM, is modified and implemented into the SDA model. Several numerical benchmark tests, including an L-shaped panel test, a tension-shear test, a notched panel test, four-point bending tests with single and double notches, and a pull-out test are performed, illustrating the good performance with respected to the SDA model and the robustness of the proposed crack-tracking strategy.

MSC:

74R10 Brittle fracture
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics

Software:

COM-MAT-FAIL
Full Text: DOI

References:

[1] Ngo, D.; Scordelis, A., Finite element analysis of reinforced concrete beams, J. Am. Concr. Inst., 64, 152-163, (1967)
[2] Rashid, Y., Ultimate strength analysis of prestressed concrete pressure vessels, Nucl. Eng. Des., 7, 334-344, (1968)
[3] Goodman, R.; Taylor, R.; Brekke, T., A model for the mechanics of jointed rock, J. Soil Mech. Found. Div. (ASCE), 99, 637-660, (1968)
[4] Herrmann, L., Finite element analysis of contact problems, J. Eng. Mech. (ASCE), 104, 1043-1059, (1978)
[5] Feenstra, P.; Borst, R., A plasticity model and algorithm for mode-I cracking in concrete, Internat. J. Numer. Methods Engrg., 38, 2509-2529, (1995) · Zbl 0847.73014
[6] Ingraffea, A.; Saouma, V., Numerical modelling of discrete crack propagation in reinforced and plain concrete, (Sih, G. C.; DiTommaso, A., Fracture Mechanics of Concrete, (1985), Martinus Nijhoff Dordrecht), 171-225
[7] Jirásek, M.; Zimmermann, T., Embedded crack model: I. basic formulation, Internat. J. Numer. Methods Engrg., 50, 1269-1290, (2001) · Zbl 1013.74068
[8] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Internat. J. Numer. Methods Engrg., 48, 1549-1570, (2000) · Zbl 0963.74067
[9] Melenk, J.; Babuška, I., The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg., 139, 289-314, (1996) · Zbl 0881.65099
[10] Jirásek, M., Computational resolution of strong discontinuities, (Mang, H.; Rammerstorfer, F.; Eberhardsteiner, J., Fifth World Congress on Computational Mechanics (WCCM V), (2002), Vienna University of Technology)
[11] Borja, R. I., Assumed enhanced strain and the extended finite element methods: a unification of concepts, Comput. Methods Appl. Mech. Engrg., 197, 2789-2803, (2008) · Zbl 1194.74368
[12] Oliver, J.; Huespe, A.; Sanchez, P., A comparative study on finite elements for capturing strong discontinuities E-FEM vs X-FEM, Comput. Methods Appl. Mech. Engrg., 195, 4732-4752, (2006) · Zbl 1144.74043
[13] Johnson, C.; Scott, R., A finite element method for problems in perfect plasticity using discontinuous trial functions, (Wunderlich, W.; Stein, E.; Bathe, K.-J., Nonlinear Finite Element Analysis in Structural Mechanics, (1981), Springer), 307-324 · Zbl 0572.73076
[14] Dvorkin, E. N.; Cuitiño, A. M.; Gioia, G., Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions, Internat. J. Numer. Methods Engrg., 30, 541-564, (1990) · Zbl 0729.73209
[15] Dvorkin, E. N.; Assanelli, A. P., 2D finite elements with displacement interpolated embedded localization lines: the analysis of fracture in frictional materials, Comput. Methods Appl. Mech. Engrg., 90, 829-844, (1991)
[16] Klisinski, M.; Runesson, K.; Sture, S., Finite element with inner softening band, J. Eng. Mech. (ASCE), 117, 575-587, (1991)
[17] Belytschko, T.; Fish, J.; Engelmann, B. E., A finite element with embedded localization zones, Comput. Methods Appl. Mech. Engrg., 70, 59-89, (1988) · Zbl 0653.73032
[18] Simo, J.; Rifai, S., A class of mixed assumed strain methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 29, 1595-1638, (1990) · Zbl 0724.73222
[19] Simo, J.; Oliver, J.; Armero, F., An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids, Comput. Mech., 12, 277-296, (1993) · Zbl 0783.73024
[20] Simo, J.; Armero, F., Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes, Internat. J. Numer. Methods Engrg., 33, 1413-1449, (1992) · Zbl 0768.73082
[21] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part I: fundamentals, Internat. J. Numer. Methods Engrg., 39, 3575-3600, (1996) · Zbl 0888.73018
[22] Horii, H.; Ichinomiya, T., Observation of fracture process zone by laser Speckle technique and governing mechanism in fracture of concrete, Int. J. Fract., 51, 19-29, (1991)
[23] Wittmann, F.; Hu, X., Fracture process zone in cementitious materials, Int. J. Fract., 51, 3-18, (1991)
[24] Otsuka, K.; Date, H., Fracture process zone in concrete tension specimen, Eng. Fract. Mech., 65, 111-131, (2000)
[25] Oliver, J.; Cervera, M.; Manzoli, O., Strong discontinuities and continuum plasticity models: the strong discontinuity approach, Int. J. Plast., 15, 319-351, (1999) · Zbl 1057.74512
[26] Jirásek, M., Comparative study on finite elements with embedded discontinuities, Comput. Methods Appl. Mech. Engrg., 188, 307-330, (2000) · Zbl 1166.74427
[27] Lotfi, H.; Shing, P., Embedded representation of fracture in concrete with mixed finite elements, Internat. J. Numer. Methods Engrg., 38, 1307-1325, (1995) · Zbl 0824.73070
[28] Gasser, T. C.; Holzapfel, G. A., Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues, Comput. Methods Appl. Mech. Engrg., 192, 5059-5098, (2003) · Zbl 1088.74541
[29] Oliver, J., Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. part II: numerical simulation, Internat. J. Numer. Methods Engrg., 39, 3601-3623, (1996) · Zbl 0888.73018
[30] Armero, F.; Garikipati, K., An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids, Internat. J. Solids Structures, 33, 2863-2885, (1996) · Zbl 0924.73084
[31] Larsson, R.; Runesson, K., Element-embedded localization band based on regularized displacement discontinuity, J. Eng. Mech. (ASCE), 122, 402-411, (1996)
[32] Larsson, R.; Runesson, K.; Sture, S., Embedded localization band in undrained soil based on regularized strong discontinuity—theory and FE-analysis, Internat. J. Solids Structures, 33, 3081-3101, (1996) · Zbl 0919.73279
[33] Washizu, K., Variational methods in elasticity and plasticity, (1982), Pergamon Press · Zbl 0164.26001
[34] Borja, R. I., A finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation, Comput. Methods Appl. Mech. Engrg., 190, 1529-1549, (2000) · Zbl 1003.74074
[35] Oliver, J.; Huespe, A.; Blanco, S.; Linero, D., Stability and robustness issues in numerical modeling of material failure with the strong discontinuity approach, Comput. Methods Appl. Mech. Engrg., 195, 7093-7114, (2006) · Zbl 1331.74168
[36] Borja, R. I., Finite element simulation of strain localization with large deformation: capturing strong discontinuity using a Petrov-Galerkin multiscale formulation, Comput. Methods Appl. Mech. Engrg., 191, 2949-2978, (2002) · Zbl 1030.74049
[37] Radulovic, R., Numerical modeling of localized material failure by means of strong discontinuities at finite strains, (2010), Ruhr University Bochum, Germany, (Ph.D. thesis)
[38] Mosler, J.; Meschke, G., 3D modelling of strong discontinuities in elastoplastic solids: fixed and rotating localization formulations, Internat. J. Numer. Methods Engrg., 57, 1553-1576, (2003) · Zbl 1062.74623
[39] Feist, C.; Hofstetter, G., An embedded strong discontinuity model for cracking of plain concrete, Comput. Methods Appl. Mech. Engrg., 195, 7115-7138, (2006) · Zbl 1331.74164
[40] Oliver, J.; Huespe, A., Theoretical and computational issues in modelling material failure in strong discontinuity scenarios, Comput. Methods Appl. Mech. Engrg., 193, 2987-3014, (2004) · Zbl 1067.74505
[41] Oliver, J.; Dias, I.; Huespe, A., Crack-path field and strain-injection techniques in computational modeling of propagating material failure, Comput. Methods Appl. Mech. Engrg., 274, 289-348, (2014) · Zbl 1296.74102
[42] Oliver, J., A consistent characteristic length for smeared cracking models, Internat. J. Numer. Methods Engrg., 28, 461-474, (1989) · Zbl 0676.73066
[43] Camacho, G.; Ortiz, M., Computational modelling of impact damage in brittle materials, Internat. J. Solids Structures, 33, 2899-2938, (1996) · Zbl 0929.74101
[44] Meschke, G.; Dumstorff, P., Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Comput. Methods Appl. Mech. Engrg., 196, 2338-2357, (2007) · Zbl 1173.74384
[45] Mariani, S.; Perego, U., Extended finite element method for quasi-brittle fracture, Internat. J. Numer. Methods Engrg., 58, 103-126, (2003) · Zbl 1032.74673
[46] Belytschko, T.; Organ, D.; Gerlach, C., Element-free Galerkin methods for dynamic fracture in concrete, Comput. Methods Appl. Mech. Engrg., 187, 385-399, (2000) · Zbl 0962.74077
[47] Simo, J.; Hughes, T., Computational inelasticity, vol. 7, (1998), Springer · Zbl 0934.74003
[48] Zhang, Y., Simulation methods for durability assessment of concrete structures: multifield framework and strong discontinuity embedded approach, (2013), Vienna University of Technology, (Ph.D. thesis)
[49] J. Oliver, A. Huespe, E. Samaniego, E. Chaves, On strategies for tracking strong discontinuities in computational failure mechanics, in: H. Mang, F. Rammerstorfer, and J. Eberhardsteiner, (Eds.) Fifth World Congress on Computational Mechanics, WCCM V, 2002.; J. Oliver, A. Huespe, E. Samaniego, E. Chaves, On strategies for tracking strong discontinuities in computational failure mechanics, in: H. Mang, F. Rammerstorfer, and J. Eberhardsteiner, (Eds.) Fifth World Congress on Computational Mechanics, WCCM V, 2002.
[50] Stolarska, M.; Chopp, D.; Moës, N.; Belytschko, T., Modelling crack growth by level sets in the extended finite element method, Internat. J. Numer. Methods Engrg., 51, 943-960, (2001) · Zbl 1022.74049
[51] Rots, J., Computational modeling of concrete fracture, (1988), Delft University of Technology, (Ph.D. thesis)
[52] Winkler, B., Traglastuntersuchungen von unbewehrten und bewehrten betonstrukturen auf der grundlage eines objektiven werkstoffgesetzes für beton, (2001), University of Innsbruck, (Ph.D. thesis)
[53] Dumstorff, P.; Meschke, G., Crack propagation criteria in the framework of X-FEM-based structural analyses, Int. J. Numer. Anal. Methods Geomech., 31, 239-259, (2007) · Zbl 1159.74038
[54] Jirásek, M.; Zimmermann, T., Analysis of rotating crack model, J. Eng. Mech. (ASCE), 124, 842-851, (1998)
[55] Mosler, J., On advanced solution strategies to overcome locking effects in strong discontinuity approaches, Internat. J. Numer. Methods Engrg., 63, 1313-1341, (2005) · Zbl 1138.74397
[56] Radulovic, R.; Bruhns, O.; Mosler, J., Effective 3D failure simulations by combining the advantages of embedded strong discontinuity approaches and classical interface elements, Eng. Fract. Mech., 78, 2470-2485, (2011)
[57] Cervera, M.; Pela, L.; Clemente, R.; Roca, P., A crack-tracking technique for localized damage in quasi-brittle materials, Eng. Fract. Mech., 77, 2431-2450, (2010)
[58] Jirásek, M.; Zimmermann, T., Embedded crack model: II. combination with smeared cracks, Internat. J. Numer. Methods Engrg., 50, 1291-1305, (2001) · Zbl 1013.74068
[59] Theiner, Y.; Hofstetter, G., Numerical prediction of crack propagation and crack widths in concrete structures, Eng. Struct., 31, 1832-1840, (2009)
[60] Oliver, J.; Huespe, A., Continuum approach to material failure in strong discontinuity settings, Comput. Methods Appl. Mech. Engrg., 193, 3195-3220, (2004) · Zbl 1060.74507
[61] Gravouil, A.; Moës, N.; Belytschko, T., Non-planar 3D crack growth by the extended finite element and level sets—part II: level set update, Internat. J. Numer. Methods Engrg., 53, 2569-2586, (2002) · Zbl 1169.74621
[62] Unger, J. F.; Eckardt, S.; Könke, C., Modelling of cohesive crack growth in concrete structures with the extended finite element method, Comput. Methods Appl. Mech. Engrg., 196, 4087-4100, (2007) · Zbl 1173.74387
[63] Meschke, G.; Dumstorff, P., How does the crack know where to propagate?—A X-FEM-based study on crack propagation criteria, (Yuan, H.; Wittmann, F., Nonlocal Modelling of Failure of Materials, (2007)), 201-218, Proceedings of an International Workshop (Nonlocal Modeling of Material’s Failure, NMMF 2007)
[64] Jäger, P.; Steinmann, P.; Kuhl, E., Modeling three-dimensional crack propagation—a comparison of crack path tracking strategies, Internat. J. Numer. Methods Engrg., 76, 1328-1352, (2008) · Zbl 1195.74149
[65] Feist, C., A numerical model for cracking of plain concrete based on the strong discontinuity approach, (2004), University of Innsbruck, (Ph.D. thesis)
[66] Xie, M.; Gerstle, W., Energy-based cohesive crack propagation modeling, J. Eng. Mech. (ASCE), 121, 1349-1358, (1995)
[67] Sancho, J.; Planas, J.; Cendón, D.; Reyes, E.; Gálvez, J., An embedded crack model for finite element analysis of concrete fracture, Eng. Fract. Mech., 74, 75-86, (2007)
[68] Wells, G.; Sluys, L., Three-dimensional embedded discontinuity model for brittle fracture, Internat. J. Solids Structures, 38, 897-913, (2001) · Zbl 1004.74065
[69] Nooru-Mohamed, M., Mixed-mode fracture of concrete: an experimental approach, (1992), Delft University of Technology, (Ph.D. thesis)
[70] Kobayashi, A.; Hawkins, M.; Barker, D.; Liaw, B., Fracture process zone of concrete, (Shah, S., Application of Fracture Mechanics to Cementitious Composites, (1985), Martinus Nijhoff), 25-50
[71] Oliver, J.; Huespe, A.; Pulido, M.; Chaves, E., From continuum mechanics to fracture mechanics: the strong discontinuity approach, Eng. Fract. Mech., 69, 113-136, (2002)
[72] Arrea, M.; Ingraffea, A., Mixed-mode crack propagation in mortar and concrete, tech. rep., no. 81-13, (1982), Department of Structural Engineering, Cornell University Ithaca, New York
[73] Bocca, P.; Carpinteri, A.; Valente, S., Mixed mode fracture of concrete, Internat. J. Solids Structures, 27, 1139-1153, (1991)
[74] Yang, Z.; Chen, J., Fully automatic modelling of cohesive discrete crack propagation in concrete beams using local arc-length methods, Internat. J. Solids Structures, 41, 801-826, (2004) · Zbl 1075.74622
[75] Geers, M.; Borst, R. D.; Peerlings, R., Damage and crack modeling in single-edge and double-edge notched concrete beams, Eng. Fract. Mech., 65, 247-261, (2000)
[76] Wells, G.; Sluys, L., A new method for modelling cohesive cracks using finite elements, Internat. J. Numer. Methods Engrg., 50, 2667-2682, (2001) · Zbl 1013.74074
[77] Gasser, T. C.; Holzapfel, G. A., Modeling 3D crack propagation in unreinforced concrete using PUFEM, Comput. Methods Appl. Mech. Engrg., 2859-2896, (2005) · Zbl 1176.74180
[78] Feist, C.; Hofstetter, G., Three-dimensional fracture simulations based on the SDA, Int. J. Numer. Anal. Methods Geomech., 31, 189-212, (2007) · Zbl 1113.74069
[79] J. Mosler, G. Meschke, Analysis of mode I failure in brittle materials using the strong discontinuity approach with higher order elements, in: Z. Waszczyszyn and J. Pamin, (Eds.) European Congress on Computational Mechanics, 2001.; J. Mosler, G. Meschke, Analysis of mode I failure in brittle materials using the strong discontinuity approach with higher order elements, in: Z. Waszczyszyn and J. Pamin, (Eds.) European Congress on Computational Mechanics, 2001.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.