×

Scale-span stress-constrained topology optimization for continuum structures integrating truss-like microstructures and solid material. (English) Zbl 1441.74168

Summary: This paper proposes a stress-constrained topology optimization method for structures integrating truss-like microstructures and a solid material. By utilizing the representative volume element (RVE) method, the truss-like microstructures are equivalent to homogeneous materials. Then, a power-law material interpolation scheme for bi-material, including the solid material and the equivalent material, is constructed. Based on the mechanical analysis, a yield index \(g\) is introduced to indicate the yielding situation of the truss-like microstructures. In addition, the yielding of truss-like microstructures is controlled implicitly by constraining the von Mises stress of the equivalent materials. By means of two p-norm clustered stress measures, the stress of the solid material and the equivalent material are constrained. Finally, based on the adjoint method, the sensitivity of stress and displacement constraints is obtained and the optimization can be solved by a gradient-based optimization algorithm. Two numerical examples are presented to demonstrate the validity and effectiveness of the proposed methodology.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
Full Text: DOI

References:

[1] Wang, L.; Xiong, C.; Wang, X.; Xu, M.; Li, Y., A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis, Appl. Math. Model., 59, 680-695 (2018) · Zbl 1480.62250
[2] Wang, L.; Xiong, C.; Wang, R. X.; Wang, X. J.; Wu, D., A novel method of Newton iteration-based interval analysis for multidisciplinary systems, Sci. China Phys. Mech. Astron., 60, Article 094611 pp. (2017)
[3] Bendsøe, M. P.; Kikuchi, E., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197-224 (1988) · Zbl 0671.73065
[4] Mei, Y.; Wang, X., A level set method for structural topology optimization and its applications, Comput. Methods Appl. Mech. Eng., 35, 415-441 (2004) · Zbl 1067.90153
[5] Xia, Q.; Wang, M. Y.; Wang, S.; Chen, S., Semi-Lagrange method for level-set-based structural topology and shape optimization, Struct. Multidiscip. Optim., 31, 419-429 (2006) · Zbl 1245.74076
[6] Xie, Y. M.; Steven, G. P., A simple evolutionary procedure for structural optimization, Comput. Struct., 49, 885-896 (1993)
[7] Bendsøe, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 193-202 (1989)
[8] Rozvany, G. I.N.; Zhou, M.; Birker, T., Generalized shape optimization without homogenization, Struct. Optim., 4, 250-252 (1992)
[9] Liu, P.; Luo, Y.; Kang, Z., Multi-material topology optimization considering interface behavior via XFEM and level set method, Comput. Methods Appl. Mech. Eng., 308, 113-133 (2016) · Zbl 1439.74290
[10] Long, K.; Wang, X.; Gu, X., Local optimum in multi-material topology optimization and solution by reciprocal variables, Struct. Multidiscip. Optim., 57, 1283-1295 (2018)
[11] Blasques, J. P.; Stolpe, M., Multi-material topology optimization of laminated composite beam cross sections, Compos. Struct., 94, 3278-3289 (2012)
[12] Wang, L.; Liang, J.; Zhang, Z.; Yang, Y., Nonprobabilistic reliability oriented topological optimization for multi-material heat-transfer structures with interval uncertainties, Struct. Multidiscip. Optim., 59, 1599-1620 (2019)
[13] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Eng., 278, 524-542 (2014) · Zbl 1423.74770
[14] Wang, L.; Liang, J.; Wu, D., A non-probabilistic reliability-based topology optimization (NRBTO) method of continuum structures with convex uncertainties, Struct. Multidiscip. Optim., 1-20 (2018)
[15] Wang, L.; Liu, D.; Yang, Y.; Wang, X.; Qiu, Z., A novel method of non-probabilistic reliability-based topology optimization corresponding to continuum structures with unknown but bounded uncertainties, Comput. Methods Appl. Mech. Engrg., 326, 573-595 (2017) · Zbl 1439.74299
[16] Liu, J.; Wen, G.; Zuo, H. Z.; Qing, Q., A simple reliability-based topology optimization approach for continuum structures using a topology description function, Eng. Optim., 48, 1182-1201 (2016)
[17] Lei, W.; Wang, X.; Su, H.; Lin, G., Reliability estimation of fatigue crack growth prediction via limited measured data, Int. J. Mech. Sci., 121, Article S0020740316308815 pp. (2016)
[18] Ushijima, K.; Cantwell, W. J.; Chen, D. H., Prediction of the mechanical properties of micro-lattice structures subjected to multi-axial loading, Int. J. Mech. Sci., 68, 47-55 (2013)
[19] Deshpande, V. S.; Ashby, M. F.; Fleck, N. A., Foam topology: bending versus stretching dominated architectures, Acta Mater., 49, 1035-1040 (2001)
[20] Ushijima, K.; Cantwell, W. J.; Mines, R. A.W.; Tsopanos, S.; Smith, M., An investigation into the compressive properties of stainless steel micro-lattice structures, J. Sandw. Struct. Mater., 12, 3907-3912 (2010)
[21] Deshpande, V. S.; Fleck, N. A.; Ashby, M. F., Effective properties of the octet-truss lattice material, J. Mech. Phys. Solids, 49, 1747-1769 (2001) · Zbl 1011.74056
[22] Renton, J. D., The beam-like behavior of space trusses, AIAA J., 22, 273-280 (2012) · Zbl 0536.73066
[23] Yan, J.; Cheng, G.; Liu, S.; Liu, L., Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure, Int. J. Mech. Sci., 48, 400-413 (2006) · Zbl 1192.74312
[24] Gümrük, R.; Mines, R., Compressive behaviour of stainless steel micro-lattice structures, Int. J. Mech. Sci., 68, 125-139 (2013)
[25] Tancogne-Dejean, T.; Spierings, A. B.; Mohr, D., Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading, Acta Mater., 116, 14-28 (2016)
[26] Olhoff, N.; Rønholt, E.; Scheel, J., Topology optimization of three-dimensional structures using optimum microstructures, Struct. Optim., 16, 1-18 (1998)
[27] Zhang, W.; Sun, S., Scale-related topology optimization of cellular materials and structures, Internat. J. Numer. Methods Engrg., 68, 993-1011 (2006) · Zbl 1127.74035
[28] Huang, X.; Zhou, S. W.; Xie, Y. M.; Li, Q., Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput. Mater. Sci., 67, 397-407 (2013)
[29] Duysinx, P.; Bendsøe, M. P., Topology optimization of continuum structures with local stress constraints, Internat. J. Numer. Methods Engrg., 43, 1453-1478 (2015) · Zbl 0924.73158
[30] Holmberg, E.; Bo, T.; Klarbring, A., Stress constrained topology optimization, Struct. Multidiscip. Optim., 48, 33-47 (2013) · Zbl 1274.74341
[31] Bruggi, M., On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 125-141 (2008) · Zbl 1273.74397
[32] Yang, R. J.; Chen, C. J., Stress-based topology optimization, Struct. Optim., 12, 98-105 (1996)
[33] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 605-620 (2010)
[34] Guo, X.; Zhang, W. S.; Wang, M. Y.; Wei, P., Stress-related topology optimization via level set approach, Comput. Methods Appl. Mech. Eng., 200, 3439-3452 (2011) · Zbl 1230.74152
[35] París, J.; Navarrina, F.; Colominas, I.; Casteleiro, M., Block aggregation of stress constraints in topology optimization of structures, Adv. Eng. Softw., 41, 433-441 (2010) · Zbl 1303.74033
[36] Sun, C. T.; Vaidya, R. S., Prediction of composite properties from a representative volume element, Compos. Sci. Technol., 56, 171-179 (1996)
[37] Wang, L.; Cai, Y.; Liu, D., Multiscale reliability-based topology optimization methodology for truss-like microstructures with unknown-but-bounded uncertainties, Comput. Methods Appl. Mech. Eng., 339, 358-388 (2018) · Zbl 1440.74314
[38] Sigmund, O.; Petersson, J., Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Struct. Optim., 16, 68-75 (1998)
[39] Bourdin, B., Filters in topology optimization, Internat. J. Numer. Methods Engrg., 50, 2143-2158 (2001) · Zbl 0971.74062
[40] Xia, Z.; Zhang, Y.; Ellyin, F., A unified periodical boundary conditions for representative volume elements of composites and applications, Int. J. Solids Struct., 40, 1907-1921 (2003) · Zbl 1048.74011
[41] Suquet, P., Elements of homogenization for inelastic solid mechanics, Homog. Tech. Compos. Media, 272 (1987) · Zbl 0645.73012
[42] Tancogne-Dejean, T.; Mohr, D., Elastically-isotropic truss lattice materials of reduced plastic anisotropy, Int. J. Solids Struct., 138, 24-39 (2018)
[43] Liu, L.; Yan, J.; Cheng, G., Optimum structure with homogeneous optimum truss-like material, Comput. Struct., 86, 1417-1425 (2008)
[44] Andreassen, E.; Andreasen, C. S., How to determine composite material properties using numerical homogenization, Comput. Mater. Sci., 83, 488-495 (2014)
[45] Yan, J.; Guo, X.; Cheng, G., Multi-scale concurrent material and structural design under mechanical and thermal loads, Comput. Mech., 57, 437-446 (2016) · Zbl 1382.74103
[46] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.