×

Piecewise length scale control for topology optimization with an irregular design domain. (English) Zbl 1441.74165

Summary: This paper presents a piecewise length scale control method for level set topology optimization. Different from the existing methods, where a unique lower limit or upper limit was applied to the entire design domain, this new method decomposes the topological design into pieces of strip-like components based on the connectivity condition, and then, the lower or upper limit for length scale control could be piecewise and dynamically defined based on each component’s real-time status (such as position, orientation, or dimension). Specifically, a sub-algorithm of structural skeleton identification and segmentation is developed to decompose the structure and its skeleton. Then, a skeleton segment-based length scale control method is developed to achieve the piecewise length scale control effect. In addition, a special type of length scale constrained topology optimization problem that involves an irregular design domain will be addressed, wherein the complex design domain plus the length scale constraint may make the conventional length scale control methods fail to work. Effectiveness of the proposed method will be proved through a few numerical examples.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
Full Text: DOI

References:

[1] Lazarov, B. S.; Wang, F.; Sigmund, O., Length scale and manufacturability in density-based topology optimization, Arch. Appl. Mech., 86, 189-218 (2016)
[2] Lazarov, B. S.; Wang, F., Maximum length scale in density based topology optimization, Comput. Methods Appl. Mech. Engrg., 318, 826-844 (2017) · Zbl 1439.74282
[3] Liu, J.; Ma, Y., A survey of manufacturing oriented topology optimization methods, Adv. Eng. Softw., 100, 161-175 (2016)
[4] Liu, J.; Yu, H.; Ma, Y., Minimum void length scale control in level set topology optimization subject to machining radii, Comput.-Aided Des., 81, 70-80 (2016)
[5] Liu, J.; Ma, Y.; Fu, J.; Duke, K., A novel CACD/CAD/CAE integrated design framework for fiber-reinforced plastic parts, Adv. Eng. Softw., 87, 13-29 (2015)
[6] Bendsøe, M. P.; Sigmund, O., Topology Optimization (2004), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg, http://link.springer.com/101007/978-3-662-05086-6 (accessed May 26, 2016) · Zbl 1059.74001
[7] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[8] Allaire, G.; Jouve, F.; Toader, A.-M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368
[9] Poulsen, T. A., A new scheme for imposing a minimum length scale in topology optimization, Internat. J. Numer. Methods Engrg., 57, 741-760 (2003) · Zbl 1062.74592
[10] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[11] Guest, J. K., Topology optimization with multiple phase projection, Comput. Methods Appl. Mech. Engrg., 199, 123-135 (2009) · Zbl 1231.74360
[12] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401-424 (2007)
[13] Schevenels, M.; Lazarov, B. S.; Sigmund, O., Robust topology optimization accounting for spatially varying manufacturing errors, Comput. Methods Appl. Mech. Engrg., 200, 3613-3627 (2011) · Zbl 1239.74080
[15] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[16] Zhou, M.; Lazarov, B. S.; Wang, F.; Sigmund, O., Minimum length scale in topology optimization by geometric constraints, Comput. Methods Appl. Mech. Engrg., 293, 266-282 (2015) · Zbl 1423.74778
[17] Guest, J. K., Imposing maximum length scale in topology optimization, Struct. Multidiscip. Optim., 37, 463-473 (2009) · Zbl 1274.74336
[18] Zhang, W.; Zhong, W.; Guo, X., An explicit length scale control approach in SIMP-based topology optimization, Comput. Methods Appl. Mech. Engrg., 282, 71-86 (2014) · Zbl 1423.74776
[19] Amir, O.; Lazarov, B. S., Achieving stress-constrained topological design via length scale control, Struct. Multidiscip. Optim., 1-19 (2018)
[20] Chen, S.; Wang, M. Y.; Liu, A. Q., Shape feature control in structural topology optimization, Comput.-Aided Des., 40, 951-962 (2008)
[22] Guo, X.; Zhang, W.; Zhong, W., Explicit feature control in structural topology optimization via level set method, Comput. Methods Appl. Mech. Engrg., 272, 354-378 (2014) · Zbl 1296.74081
[23] Xia, Q.; Shi, T., Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization, Comput. Methods Appl. Mech. Engrg., 295, 525-542 (2015) · Zbl 1423.74773
[24] Liu, J.; Li, L.; Ma, Y., Uniform thickness control without pre-specifying the length scale target under the level set topology optimization framework, Adv. Eng. Softw. (2018)
[25] Liu, J.; Ma, Y., A new multi-material level set topology optimization method with the length scale control capability, Comput. Methods Appl. Mech. Engrg., 329, 444-463 (2018) · Zbl 1439.74289
[26] Wang, Y.; Zhang, L.; Wang, M. Y., Length scale control for structural optimization by level sets, Comput. Methods Appl. Mech. Engrg., 305, 891-909 (2016) · Zbl 1425.74371
[27] Zhang, W.; Li, D.; Zhang, J.; Guo, X., Minimum length scale control in structural topology optimization based on the Moving Morphable Components (MMC) approach, Comput. Methods Appl. Mech. Engrg., 311, 327-355 (2016) · Zbl 1439.74312
[28] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically—a new moving morphable components based framework, J. Appl. Mech., 81 (2014), 081009-081009
[29] Guo, X.; Zhang, W.; Zhang, J.; Yuan, J., Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Engrg., 310, 711-748 (2016) · Zbl 1439.74272
[30] Zhang, W.; Li, D.; Yuan, J.; Song, J.; Guo, X., A new three-dimensional topology optimization method based on moving morphable components (MMCs), Comput. Mech., 59, 647-665 (2017) · Zbl 1398.74258
[33] Liu, J.; Cheng, L.; To, A. C., Arbitrary void feature control in level set topology optimization, Comput. Methods Appl. Mech. Engrg., 324, 595-618 (2017) · Zbl 1439.74288
[34] Zhang, W.; Zhou, Y.; Zhu, J., A comprehensive study of feature definitions with solids and voids for topology optimization, Comput. Methods Appl. Mech. Engrg., 325, 289-313 (2017) · Zbl 1439.74310
[35] Liu, J.; Gaynor, A. T.; Chen, S.; Kang, Z.; Suresh, K.; Takezawa, A.; Li, L.; Kato, J.; Tang, J.; Wang, C. C.L.; Cheng, L.; Liang, X.; To, A. C., Current and future trends in topology optimization for additive manufacturing, Struct. Multidiscip. Optim., 57, 2457-2483 (2018)
[36] Osher, S.; Fedkiw, R., Level Set Methods and Dynamic Implicit Surfaces (2003), Springer New York: Springer New York New York, NY, http://link.springer.com/101007/b98879 (accessed May 26, 2016) · Zbl 1026.76001
[37] Peng, D.; Merriman, B.; Osher, S.; Zhao, H.; Kang, M., A PDE-based fast local level set method, J. Comput. Phys., 155, 410-438 (1999) · Zbl 0964.76069
[38] Osher, S.; Sethian, J. A., Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[39] Allaire, G.; Dapogny, C.; Delgado, G.; Michailidis, G., Multi-phase structural optimization via a level set method, ESAIM Control Optim. Calc. Var., 20, 576-611 (2014) · Zbl 1287.49045
[40] C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, Hal-01660850v2. (2018). https://hal.archives-ouvertes.fr/hal-01660850; C. Dapogny, R. Estevez, A. Faure, G. Michailidis, Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, Hal-01660850v2. (2018). https://hal.archives-ouvertes.fr/hal-01660850
[41] Zhang, L.; He, Q.; Ito, S.; Kita, K., Euclidean distance-ordered thinning for skeleton extraction, (2010 2nd Int. Conf. Educ. Technol. Comput. (2010)), 311-315
[42] Palágyi, K.; Kuba, A., A parallel 3D 12-subiteration thinning algorithm, Graph. Models Image Process., 61, 199-221 (1999)
[43] Arcelli, C.; di Baja, G. S.; Serino, L., Distance-driven skeletonization in voxel images, IEEE Trans. Pattern Anal. Mach. Intell., 33, 709-720 (2011)
[44] Tagliasacchi, A.; Delame, T.; Spagnuolo, M.; Amenta, N.; Telea, A., 3D skeletons: A state-of-the-art report, Comput. Graph. Forum., 35, 573-597 (2016)
[45] Kustra, J.; Jalba, A.; Telea, A., Computing refined skeletal features from medial point clouds, Pattern Recognit. Lett., 76, 13-21 (2016)
[46] Saha, P. K.; Borgefors, G.; Sanniti di Baja, G., A survey on skeletonization algorithms and their applications, Pattern Recognit. Lett., 76, 3-12 (2016)
[47] Wang, Y.; Chen, F.; Wang, M. Y., Concurrent design with connectable graded microstructures, Comput. Methods Appl. Mech. Engrg., 317, 84-101 (2017) · Zbl 1439.74239
[48] Li, H.; Luo, Z.; Gao, L.; Qin, Q., Topology optimization for concurrent design of structures with multi-patch microstructures by level sets, Comput. Methods Appl. Mech. Engrg., 331, 536-561 (2018) · Zbl 1439.74284
[49] Li, H.; Luo, Z.; Gao, L.; Walker, P., Topology optimization for functionally graded cellular composites with metamaterials by level sets, Comput. Methods Appl. Mech. Engrg., 328, 340-364 (2018) · Zbl 1439.74285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.