×

Weak and strong type estimates for the multilinear pseudo-differential operators. (English) Zbl 1441.47058

This paper is devoted to the investigation of the boundedness of multilinear pseudodifferential operators as \[ T_{\sigma}(\vec{f})(x) = \int_{(\mathbb{R}^n)^m} e^{2\pi i x\cdot (\xi_1 +\ldots + \xi_m)} \sigma(x,\vec{\xi}) \widehat{f_1}(\xi_1)\cdots \widehat{f_m}(\xi_m) \,d\vec{\xi}, \] with symbols \(\sigma\) in suitable (multilinear versions of) Hörmander classes and, for locally integrable functions \(\mathbf{b}=(b_1,\ldots,b_m)\), of the commutators \[ T_{\sigma,\mathbf{b}\Sigma}(\vec{f})(x) = \sum_{j=1}^m [b_j,T_{\sigma}]_j(\vec{f})(x), \] where each term is the commutator of \(b_j\) and \(T_{\sigma}\) in the \(j\)-th entry of \(T_{\sigma}\).
In more detail, the authors prove local exponential and subexponential decay estimates for \(T_{\sigma}(\vec{f})\) and \(T_{\sigma,\mathbf{b}\Sigma}(\vec{f})\), respectively. Subsequently, weighted mixed weak type inequalities for \(T_{\sigma}\) are derived, in the spirit of similar weak type estimates recently proved for Calderón-Zygmund and generalized maximal operators [A. K. Lerner et al., Adv. Math. 220, No. 4, 1222–1264 (2009; Zbl 1160.42009); C. Pérez, J. Funct. Anal. 128, No. 1, 163–185 (1995; Zbl 0831.42010)]. Techniques of sparse domination are used and also endpoint cases are encompassed. Moreover, classical weighted estimates for \(T_{\sigma}(\vec{f})\) and \(T_{\sigma,\mathbf{b}\Sigma}(\vec{f})\) are improved, namely, sharp results are obtained by means of dyadic analysis techniques.

MSC:

47G30 Pseudodifferential operators
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47H60 Multilinear and polynomial operators

References:

[1] Bényi, Á.; Torres, R. H., Almost orthogonality and a class of bounded bilinear pseudodifferential operators, Math. Res. Lett., 11, 1-12 (2004) · Zbl 1067.47062
[2] Bényi, Á.; Torres, R. H., Sobolev space estimates for a class of bilinear pseudodifferential operators lacking symbolic calculus, Anal. PDE, 4, 551-571 (2011) · Zbl 1290.47048
[3] Berra, F., Mixed weak estimates of Sawyer type for generalized maximal operators, Proc. Am. Math. Soc., 147, 4259-4273 (2019) · Zbl 1427.42015
[4] Berra, F.; Carena, M.; Pradolini, G., Mixed weak estimates of Sawyer type for commutators of generalized singular integrals and related operators, Mich. Math. J., 68, 527-564 (2019) · Zbl 1427.42016
[5] Bourdaud, G., \( L^p\)-estimates for certain non-regular pseudo-differential operators, Commun. Partial Differ. Equ., 7, 1023-1033 (1982) · Zbl 0499.35097
[6] Bui, T. A.; Hormozi, M., Weighted bounds for multilinear square functions, Potential Anal., 46, 135-148 (2017) · Zbl 1358.42009
[7] Calderón, A. P.; Vaillancourt, R., A class of bounded pseudo-differential operators, Proc. Natl. Acad. USA, 69, 1185-1187 (1972) · Zbl 0244.35074
[8] Cao, M.; Yabuta, K., The multilinear Littlewood-Paley operators with minimal regularity conditions, J. Fourier Anal. Appl., 25, 1203-1247 (2019) · Zbl 1440.42075
[9] Chen, S.; Wu, H.; Xue, Q., A note on multilinear Muckenhoupt classes for multiple weights, Stud. Math., 223, 1-18 (2014) · Zbl 1311.42055
[10] Coifman, R.; Meyer, Y., Commutateurs d’intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier (Grenoble), 28, 177-202 (1978) · Zbl 0368.47031
[11] Coifman, R.; Meyer, Y., Au-delà des opérateurs pseudo-différentiels, Astèrisque, vol. 57 (1978) · Zbl 0483.35082
[12] Cruz-Uribe, D.; Martell, J. M.; Pérez, C., Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not., 30, 1849-1871 (2005) · Zbl 1092.42008
[13] Cruz-Uribe, D.; Martell, J. M.; Pérez, C., Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215 (2011), Birkhäuser/Springer: Birkhäuser/Springer Basel AG, Basel · Zbl 1234.46003
[14] Fefferman, C.; Kohn, J., Hölder estimates on domains of complex dimension two and on three dimensional CR manifolds, Adv. Math., 69, 223-303 (1988) · Zbl 0649.35068
[15] Grafakos, L., Modern Fourier Analysis, GTM, vol. 250 (2014), Springer: Springer New York · Zbl 1304.42002
[16] Guan, P., Hölder regularity of subelliptic pseudodifferential operators, Duke Math. J., 60, 563-598 (1990) · Zbl 0714.35019
[17] Hörmander, L., Pseudo-differential operators and non-elliptic boundary problems, Ann. Math., 83, 2, 129-209 (1966) · Zbl 0132.07402
[18] Hörmander, L., Hypoelliptic second order differential equations, Acta Math., 119, 147-171 (1967) · Zbl 0156.10701
[19] Hörmander, L., Pseudo-differential operators and hypoelliptic equations, (Singular Integrals, Proc. Sympos. Pure Math., Vol. X. Singular Integrals, Proc. Sympos. Pure Math., Vol. X, Chicago, Ill., 1966 (1967), Amer. Math. Soc.: Amer. Math. Soc. Providence, R.I.), 138-183 · Zbl 0167.09603
[20] Hörmander, L., On the \(L^2\) continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24, 529-535 (1971) · Zbl 0206.39303
[21] Hounie, J., On the \(L^2\) continuity of pseudo-differential operators, Commun. Partial Differ. Equ., 11, 765-778 (1986) · Zbl 0597.35121
[22] Hytönen, T., The \(A_2\) Theorem: Remarks and Complements, Contemp. Math., vol. 612, 91-106 (2014), Amer. Math. Soc.: Amer. Math. Soc. Providence · Zbl 1354.42022
[23] Hytönen, T.; Pérez, C., Sharp weighted bounds involving \(A_\infty \), Anal. PDE, 6, 777-818 (2013) · Zbl 1283.42032
[24] Karagulyan, G. A., Exponential estimates for Calderón-Zygmund operator and related problems of Fourier series, Math. Notes, 71, 398-411 (2002) · Zbl 1044.42017
[25] Kumano-Go, H., A problem of Nirenberg on pseudo-differential operators, Commun. Pure Appl. Math., 23, 115-121 (1970) · Zbl 0186.16405
[26] Lerner, A. K., Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals, Adv. Math., 226, 3912-3926 (2011) · Zbl 1226.42010
[27] Lerner, A. K.; Ombrosi, S.; Pérez, C.; Torres, R. H.; Trujillo-González, R., New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220, 1222-1264 (2009) · Zbl 1160.42009
[28] Lerner, A. K.; Ombrosi, S.; Rivera-Ríos, I. P., On pointwise and weighted estimates for commutators of Calderón-Zygmund operators, Adv. Math., 319, 153-181 (2017) · Zbl 1379.42007
[29] Li, K., Sparse domination theorem for multilinear singular integral operators with \(L^r\)-Hörmander condition, Mich. Math. J., 67, 253-265 (2018) · Zbl 1393.42014
[30] Li, K.; Moen, K.; Sun, W., The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators, J. Fourier Anal. Appl., 20, 751-765 (2014) · Zbl 1318.42022
[31] Li, K.; Ombrosi, S.; Pérez, C., Proof of an extension of E. Sawyer’s conjecture about weighted mixed weak-type estimates, Math. Ann., 374, 907-929 (2019) · Zbl 1416.42021
[32] Li, K.; Ombrosi, S.; Picardi, B., Weighted mixed weak-type inequalities for multilinear operators, Stud. Math., 244, 203-215 (2019) · Zbl 1412.42042
[33] Maldonado, D.; Naibo, V., Weighted norm inequalities for paraproducts and bilinear pseudodifferential operators with mild regularity, J. Fourier Anal. Appl., 15, 218-261 (2009) · Zbl 1171.42009
[34] Miller, N., Weighted Sobolev spaces and pseudodifferential operators with smooth symbols, Trans. Am. Math. Soc., 269, 91-109 (1982) · Zbl 0482.35082
[35] Muckenhoupt, B.; Wheeden, R., Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Indiana Math. J., 26, 801-816 (1977) · Zbl 0337.44001
[36] Nagase, M., The \(L^p\)-boundedness of pseudo-differential equations with non-regular symbols, Commun. Partial Differ. Equ., 2, 1045-1061 (1977) · Zbl 0397.35071
[37] O’Neil, R., Fractional integration in Orlicz spaces, Trans. Am. Math. Soc., 115, 300-328 (1965) · Zbl 0132.09201
[38] Ortiz-Caraballo, C., Quadratic \(A_1\) bounds for commutators of singular integrals with bmo functions, Indiana Univ. Math. J., 60, 2107-2130 (2011) · Zbl 1261.42023
[39] Ortiz-Caraballo, C.; Pérez, C.; Rela, E., Exponential decay estimates for singular integral operators, Math. Ann., 357, 1217-1243 (2018) · Zbl 1297.42025
[40] Pérez, C., Weighted norm inequalities for singular integral operators, J. Lond. Math. Soc., 49, 2, 296-308 (1994) · Zbl 0797.42010
[41] Pérez, C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal., 28, 163-185 (1995) · Zbl 0831.42010
[42] Pérez, C.; Pradolini, G.; Torres, R.; Trujillo-Gonzlez, R., Endpoint estimates for iterated commutators of multilinear singular integrals, Bull. Lond. Math. Soc., 46, 26-42 (2014) · Zbl 1321.42032
[43] Pérez, C.; Rivera-Ríos, I. P., Borderline weighted estimates for commutators of singular integrals, Isr. J. Math., 217, 435-475 (2017) · Zbl 1362.42035
[44] Pérez, C.; Torres, R. H., Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 320, 323-331 (2003) · Zbl 1045.42011
[45] Rodríguez-López, S.; Rule, D.; Staubach, W., A Seeger-Sogge-Stein theorem for bilinear Fourier integral operators, Adv. Math., 264, 1-54 (2014) · Zbl 1296.35227
[46] Sawyer, E. T., A weighted weak type inequality for the maximal function, Proc. Am. Math. Soc., 93, 610-614 (1985) · Zbl 0588.42013
[47] Yabuta, K., Calderón-Zygmund operators and pseudodifferential operators, Commun. Partial Differ. Equ., 10, 1005-1022 (1985) · Zbl 0578.47040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.