×

Borderline weighted estimates for commutators of singular integrals. (English) Zbl 1362.42035

Summary: In this paper we establish the following estimate:
\[ \begin{split} \omega (\{ x \in \mathbb{R}^n:| [b,T]f(x)| > \lambda \}) \\ \leq \frac{c_T}{\varepsilon^2}\int_{\mathbb{R}^n} \Phi \left( \| b \|_{BMO}\frac{| f(x)|}{\lambda} \right)M_{L( \log L)^{1 + \varepsilon}} \omega (x)dx \end{split} \]
where \(\omega \geq 0\), \(0 < \varepsilon < 1\) and \(\Phi(t)=t(1 + \log^{+}(t))\). This inequality relies upon the following sharp \(L^p\) estimate:
\[ \| [b,T]f\|_{L^p(\omega)} \leq c_T(p')^2p^2\left ( \frac{p - 1}{\delta} \right)^{\frac{1}{p'}}\| b \|_{BMO}\| f \|_{L^p\left (M_{L( \log_L)^{2p - 1 + \delta^{\omega}}}\right )} \]
where \(1<p< \infty\), \(\omega \geq 0\) and \(0 < \delta < 1\). As a consequence we recover the following estimate essentially contained in [C. Ortiz-Caraballo, Indiana Univ. Math. J. 60, No. 6, 2107–2130 (2011; Zbl 1261.42023)]:
\[ \begin{split} \omega (\{ x \in \mathbb{R}^n:| [b,T]f(x)| > \lambda \}) \\ \leq c_T[ \omega ]_{A_\infty}(1 + \log^+[ \omega ]_{A_{\infty}})^2\int_{\mathbb{R}^n} \Phi \left( \| b \|_{BMO}\frac{| f(x)|}{\lambda} \right)M \omega (x)dx.\end{split} \]
We also obtain the analogue estimates for symbol-multilinear commutators for a wider class of symbols.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

Citations:

Zbl 1261.42023

References:

[1] J. Alvarez and C. Perez. Estimates with A∞weights for various singular integral operators, Boll. Un. Mat. Ital. A (7) 8 (1994), 123-133. · Zbl 0807.42013
[2] F. Chiarerrza, M. Frasca and P. Longo, W2,p-solvability of the Diriclilet problem for nondivergence elliptic equations with VMO coefficients, Trans. Airier. Math. Soc. 336 (1993), 841-853. · Zbl 0818.35023
[3] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Ilardv spaces in several variables, Arm. of Math. (2) 103 (1976), 611-635. · Zbl 0326.32011 · doi:10.2307/1970954
[4] A. Criado and F. Soria, Muckenlioupt-Wheeden conjectures in higher dimensions, Studia Math. 233 (2016), 25-45. · Zbl 1350.42023
[5] D. Cruz-Uribe and C. Pérez, Two weight extrapolation via the maximal operator, J. Funct. Anal. 174 (2000), 1-17. · Zbl 0976.46018 · doi:10.1006/jfan.2000.3570
[6] G. Domingo-Salazar, M. Lacey and G. Rey, Borderline weak-type estimates for singular integrals and square functions. Bull. Loud. Math. Soc. 48 (2016), 63-73. · Zbl 1343.42012 · doi:10.1112/blms/bdv090
[7] N. Fujii, Weighted bounded mean oscillation and singular integrals. Math. Japon. 22 (1977/78), 529-534. · Zbl 0385.26010
[8] L. Greco and T. Iwaniec, New inequalities for the Jacobian. Ann. Inst. II. Poincaré Anal. Non Linéaire 11 (1994), 17-35. · Zbl 0848.58051 · doi:10.1016/S0294-1449(16)30194-9
[9] T. Hytònen and C. Pérez, Sliarp weighted bounds involving A∞, Anal. PDE 6 (2013), 777-818. · Zbl 1283.42032 · doi:10.2140/apde.2013.6.777
[10] T. Hytònen and C. Pérez, The L(logL)ϵendpoint estimate for maximal singular integral operators. J. Math. Anal. Appi. 428 (2015), 605-626. · Zbl 1323.42021 · doi:10.1016/j.jmaa.2015.03.017
[11] T. Hytònen, G. Pérez and E. Reía, Sliarp reverse Holder property for weights on spaces of homogeneous type. J. Funct. Anal. 263 (2012), 3883-3899. · Zbl 1266.42045 · doi:10.1016/j.jfa.2012.09.013
[12] T. Iwaniec and C. Sbordone, Weak minima of variational integrals. J. Reine Angew. Math. 454 (1994), 143-161. Angew. Math. 454 (1994), 143-161. · Zbl 0802.35016
[13] T. Iwaniec and G. Sbordone. Riesz transforms and elliptic PDEs with VMO coefficients, J. Anal. Math. 74 (1998), 183-212. · Zbl 0909.35039 · doi:10.1007/BF02819450
[14] M. A. Krasnosel’skii and J. B. Rutickii, Convex functions and Orlicz spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961. · Zbl 0095.09103
[15] A. K. Lerner, S. Ombrosi and G. Perez. Ai bounds for Calderon-Zygmund operators related to a problem of Muckenhoupt and Wheeden, Math. Res. Lett. 16 (2009), 149-156. · Zbl 1169.42006 · doi:10.4310/MRL.2009.v16.n1.a14
[16] B. Muckenhoupt, Weighted norm inequalities for the Ilardv maximal function, Trans. Airier. Math. Soc. 165 (1972), 207-226. · Zbl 0236.26016 · doi:10.1090/S0002-9947-1972-0293384-6
[17] F. Nazarov, A. Reznikov, V. Vasyunin and A. Volberg, A Bellman function counterexample to the A1conjecture: the blow-up of the weak norm estimates of weighted singular operators, ArXiv e-prints (2015).
[18] G. Ortiz-Caraballo, Quadratic A1bounds for commutators of singular integrals with DMO functions, Indiana Univ. Math. J. 60 (2011), 2107-2129. · Zbl 1261.42023 · doi:10.1512/iumj.2011.60.4494
[19] Ortiz-Caraballo, G.; Perez, G.; Rela, E., Improving bounds for singular operators via sharp reverse Holder inequality for, in Advances in harmonic analysis and operator theory, 303-321 (2013) · Zbl 1261.42001
[20] C. Pérez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), 296-308. · Zbl 0797.42010 · doi:10.1112/jlms/49.2.296
[21] C. Pérez, Endpoint estimates for commutators of singular integral operators, J. Funct. Anal. 128 (1995), 163-185. · Zbl 0831.42010 · doi:10.1006/jfan.1995.1027
[22] C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Ilardy-Littlewood maximal function, J. Fourier Anal. Appl. 3 (1997), 743-756. · Zbl 0894.42006 · doi:10.1007/BF02648265
[23] C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integrals, Michigan Math. J. 49 (2001), 23-37. · Zbl 1010.42007 · doi:10.1307/mmj/1008719033
[24] C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc. (2) 65 (2002), 672-692. · Zbl 1012.42008 · doi:10.1112/S0024610702003174
[25] M. M. Rao and Z. Ren, Theory of orlicz spaces, Marcel Dekker, 1991. · Zbl 0724.46032
[26] M. C. Reguera and C. Tliiele, The Hilbert transform does not map L1(Mw) to L1, ∞(ω), Math. Res. Lett. 19 (2012), 1-7. · Zbl 1271.42025 · doi:10.4310/MRL.2012.v19.n1.a1
[27] R. Rochberg and G. Weiss, Derivatives of analytic families of Danacli spaces, Ann. of Math. (2) 118 (1983), 315-347. · Zbl 0539.46049 · doi:10.2307/2007031
[28] V. I. Vasynnin, The exact constant in the inverse Holder inequality for Muckenhoupt weights, St. Petersburg Math. J. 15 (2004), 49-79. · Zbl 1057.42017 · doi:10.1090/S1061-0022-03-00802-1
[29] V. I. Vasyuiiin, The exact constant in the inverse Holder inequality for Muckenhoupt weights, St. Petersburg Math. J. 15 (2004). 49-79. · Zbl 0802.35016
[30] J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic Duke Math. J. 55 (1987), 19-50. · Zbl 0639.42016 · doi:10.1215/S0012-7094-87-05502-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.