×

Bilinear forms with Kloosterman sums and applications. (English) Zbl 1441.11194

This paper concerns bilinear sums involving generalized Kloosterman sums (hyper-Kloosterman sums) to prime modulus \(p\), given by \[ \mathrm{Kl}_k(a;p)=p^{-(k-1)/2}\sum_{1\le x_1,\ldots,x_{k-1}<p}e_p(x_1+\ldots+x_{k-1}+a \overline{x_1\ldots x_{k-1}}), \] where \(p\nmid a\). The sums considered take the form \[ \Sigma=\sum_{m\in\mathcal{M},\,n\in\mathcal{N}}\alpha_m\beta_n\mathrm{Kl}_k(amn;p), \] where \(\alpha_m\) and \(\beta_n\) are complex coefficients and \(\mathcal{M}=\{1,2,\ldots,M\}\) and \(\mathcal{N}=\{N_0+1,N_0+2,\ldots,N_0+N\}\) for positive integers \(M,N<p\).
The first, most general, result states that if \(p\) is prime and \(M\le Np^{1/4}\) and \(p^{1/4}<MN<p^{5/4}\) then for any fixed \(\varepsilon>0\) one has \[ \Sigma\ll_{\varepsilon,k}p^{\varepsilon}||\alpha||_2 ||\beta||_2(MN)^{1/2}\left(M^{-1/2}+(MN)^{-3/16}p^{11/64}\right),\tag{\(\ast\)} \] where \[ ||\alpha||_k=\left(\sum|\alpha_m|^k\right)^{1/k} \] is the \(\ell^k\)-norm. For comparison, the trivial bound would be \(||\alpha||_2||\beta||_2(MN)^{1/2}\), while a relatively straightforward argument yields \[ \Sigma\ll_{k}||\alpha||_2 ||\beta||_2(MN)^{1/2}\left(p^{-1/4}+M^{-1/2}+N^{-1/2}p^{1/4}\right). \] This latter bound is trivial when \(N\ll p^{1/2}\), and the significance of the new result (*) is that it is non-trivial for a range including the case \(M=N=p^{1/2}\).
The result above handles a Type-II bilinear sum, that is to say, with unrestricted coefficients. The second main result handles a Type-I sum, in which we suppose that \(\beta_n=1\) for all \(n\in\mathcal{N}\). Then, if we replace the conditions on \(M\) and \(N\) by \(M\le N^2\) and \(MN<p^{3/2}\), it is shown that \[ \Sigma\ll_{\varepsilon,k}p^{\varepsilon}||\alpha||_1^{1/2}||\alpha||_2^{1/2}M^{1/4}N\left(\frac{M^2N^5}{p^3}\right)^{-1/12}.\tag{\(\ast\ast\)} \] For comparison, there is a trivial bound \(||\alpha||_1^{1/2}||\alpha||_2^{1/2}M^{1/4}N\). In the special case \(k=2\), Blomer et. al. [to appear] give a slightly stronger estimate than (**), building on work of É. Fouvry and P. Michel [Ann. Sci. Éc. Norm. Supér. (4) 31, No. 1, 93–130 (1998; Zbl 0915.11045)]. The latter paper is also an important starting point for the present work.
One interesting application is to moments of twisted cuspidal \(L\)-functions. Suppose that \(f\) and \(g\) are Hecke eigenforms (holomorphic, or Maass forms), of level 1, with the same root number. Then one has an asymptotic formula, with a power saving, for \[ \sum_{\chi(\mathrm{mod}\; p)}L(f\otimes\chi,1/2)\overline{L(g\otimes\chi,1/2)}. \] The proof of the Type-II bound employs the “shift by \(ab\)” method used by Vinogradov, Burgess and Karatsuba. This requires square-root estimates for some complicated averages involving \(\mathrm{Kl}_k(a;p)\), and the proofs of these need detailed knowledge of the ramification properties of the associated sheaves.

MSC:

11L07 Estimates on exponential sums
11T23 Exponential sums
11L05 Gauss and Kloosterman sums; generalizations
11L26 Sums over arbitrary intervals
11M41 Other Dirichlet series and zeta functions
11N37 Asymptotic results on arithmetic functions
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14F20 Étale and other Grothendieck topologies and (co)homologies

Citations:

Zbl 0915.11045

References:

[1] Blomer, Valentin, Applications of the {K}uznetsov formula on {\( \text{GL}(3)\)}, Invent. Math.. Inventiones Mathematicae, 194, 673-729, (2013) · Zbl 1292.11064 · doi:10.1007/s00222-013-0454-3
[2] Blomer, Valentin; Fouvry, {\'E}.; Kowalski, E.; Michel, Ph.; Mili{\'c}evi{\'c}, D., On moments of twisted {\(L\)}-functions, Amer. J. Math., 139, 707-768, (2017) · Zbl 1476.11081
[3] Blomer, Valentin; Fouvry, {\'E}.; Kowalski, E.; Michel, Ph.; Mili{\'c}evi{\'c}, D.; Sawin, W., On the non-vanishing of twisted {\(L\)}-functions
[4] Blomer, Valentin; Mili\'cevi\'c, Djordje, The second moment of twisted modular {\(L\)}-functions, Geom. Funct. Anal.. Geometric and Functional Analysis, 25, 453-516, (2015) · Zbl 1400.11097 · doi:10.1007/s00039-015-0318-7
[5] Bump, Daniel; Friedberg, Solomon; Goldfeld, Dorian, Poincar\'e series and {K}loosterman sums for {\({\rm SL}(3,{\bf Z})\)}, Acta Arith.. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 50, 31-89, (1988) · Zbl 0647.10020
[6] Deligne, Pierre, Cohomologie \'Etale, Lecture Notes in Math., 569, iv+312pp pp., (1977) · Zbl 0345.00010 · doi:10.1007/BFb0091516
[7] Deligne, Pierre, La conjecture de {W}eil. {II}, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 137-252, (1980) · Zbl 0456.14014
[8] Deligne, Pierre; Katz, N., Groupes de Monodromie en G\'eom\'etrie Alg\'ebrique. {II}, Lecture Notes in Math., 340, x+438 pp., (1973) · doi:10.1007/BFb0060505
[9] Deshouillers, J.-M.; Iwaniec, H., Kloosterman sums and {F}ourier coefficients of cusp forms, Invent. Math.. Inventiones Mathematicae, 70, 219-288, (1982/83) · Zbl 0502.10021 · doi:10.1007/BF01390728
[10] Fouvry, \'Etienne; Ganguly, Satadal; Kowalski, Emmanuel; Michel, Philippe, Gaussian distribution for the divisor function and {H}ecke eigenvalues in arithmetic progressions, Comment. Math. Helv.. Commentarii Mathematici Helvetici. A Journal of the Swiss Mathematical Society, 89, 979-1014, (2014) · Zbl 1306.11079 · doi:10.4171/CMH/342
[11] Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, Algebraic trace functions over the primes, Duke Math. J.. Duke Mathematical Journal, 163, 1683-1736, (2014) · Zbl 1318.11103 · doi:10.1215/00127094-2690587
[12] Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, Algebraic twists of modular forms and {H}ecke orbits, Geom. Funct. Anal.. Geometric and Functional Analysis, 25, 580-657, (2015) · Zbl 1344.11036 · doi:10.1007/s00039-015-0310-2
[13] Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, On the exponent of distribution of the ternary divisor function, Mathematika. Mathematika. A Journal of Pure and Applied Mathematics, 61, 121-144, (2015) · Zbl 1317.11080 · doi:10.1112/S0025579314000096
[14] Fouvry, \'Etienne; Kowalski, Emmanuel; Michel, Philippe, A study in sums of products, Philos. Trans. Roy. Soc. A. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 373, 20140309-26, (2015) · Zbl 1397.11128 · doi:10.1098/rsta.2014.0309
[15] Fouvry, \'Etienne; Michel, Philippe, Sur certaines sommes d’exponentielles sur les nombres premiers, Ann. Sci. \'Ecole Norm. Sup.. Annales Scientifiques de l’\'Ecole Normale Sup\'erieure. Quatri\`“eme S\'”erie, 31, 93-130, (1998) · Zbl 0915.11045 · doi:10.1016/S0012-9593(98)80019-0
[16] Friedlander, John B.; Iwaniec, Henryk, Incomplete {K}loosterman sums and a divisor problem, Ann. of Math.. Annals of Mathematics. Second Series, 121, 319-350, (1985) · Zbl 0572.10029 · doi:10.2307/1971175
[17] Fu, Lei, Calculation of {\( \ell \)}-adic local {F}ourier transformations, Manuscripta Math.. Manuscripta Mathematica, 133, 409-464, (2010) · Zbl 1206.14035 · doi:10.1007/s00229-010-0377-x
[18] Fu, Lei, Etale Cohomology Theory, Nankai Tracts in Math., 13, x+611 pp., (2011) · Zbl 1228.14001 · doi:10.1142/9789814307734
[19] Fu, Lei, {\( \ell \)}-adic {GKZ} hypergeometric sheaves and exponential sums, Adv. Math.. Advances in Mathematics, 298, 51-88, (2016) · Zbl 1368.14032 · doi:10.1016/j.aim.2016.04.021
[20] Gao, Peng; Khan, Rizwanur; Ricotta, Guillaume, The second moment of {D}irichlet twists of {H}ecke {\(L\)}-functions, Acta Arith.. Acta Arithmetica, 140, 57-65, (2009) · Zbl 1242.11035 · doi:10.4064/aa140-1-4
[21] Grothendieck, A.; Raynaud, M., Rev\^etements \'Etales et Groupe Fondamental, Lecture Notes in Math., 224, xxii+447 pp., (1971) · Zbl 0234.14002 · doi:10.1007/BFb0058656
[22] Hartshorne, Robin, Algebraic Geometry, Graduate Texts in Math., 52, xvi+496 pp., (1977) · Zbl 0367.14001 · doi:10.1007/978-1-4757-3849-0
[23] Heath-Brown, D. R., The fourth power mean of {D}irichlet’s {\(L\)}-functions, Analysis. Analysis. International Journal of Analysis and its Application, 1, 25-32, (1981) · Zbl 0479.10027 · doi:10.1524/anly.1981.1.1.25
[24] Heath-Brown, D. R., The divisor function {\(d_3(n)\)} in arithmetic progressions, Acta Arith.. Polska Akademia Nauk. Instytut Matematyczny. Acta Arithmetica, 47, 29-56, (1986) · Zbl 0549.10034
[25] Hoffstein, J.; Lee, M., Second Moments and simultaneous non-vanishing of {\( \text{GL}(2)\)} automorphic {\(L\)}-series
[26] Iwaniec, Henryk; Kowalski, Emmanuel, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, xii+615 pp., (2004) · Zbl 1059.11001 · doi:10.1090/coll/053
[27] Katz, Nicholas M., Sommes Sxponentielles, Ast\'erisque, 79, 209 pp., (1980) · Zbl 0469.12007
[28] Katz, Nicholas M., Gauss sums, {K}loosterman Sums, and Monodromy Groups, Ann. of Math. Stud., 116, x+246 pp., (1988) · Zbl 0675.14004 · doi:10.1515/9781400882120
[29] Katz, Nicholas M., Exponential Sums and Differential Equations, Ann. of Math. Stud., 124, xii+430 pp., (1990) · Zbl 0731.14008 · doi:10.1515/9781400882434
[30] Katz, Nicholas M., Rigid Local Systems, Ann. of Math. Stud., 139, viii+223 pp., (1996) · Zbl 0864.14013 · doi:10.1515/9781400882595
[31] Katz, Nicholas M., Sums of {B}etti numbers in arbitrary characteristic, Finite Fields Appl.. Finite Fields and their Applications, 7, 29-44, (2001) · Zbl 1068.14501 · doi:10.1006/ffta.2000.0303
[32] Katz, Nicholas M., Convolution and Equidistribution: Sato-Tate Theorems for Finite-Field Mellin Transforms, Ann. Math. Stud., 180, viii+203 pp., (2012) · Zbl 1261.11084
[33] Katz, Nicholas M.; Laumon, G\'erard, Transformation de {F}ourier et majoration de sommes exponentielles, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 361-418, (1985) · Zbl 0603.14015
[34] Kowalski, Emmanuel, An Introduction to the Representation Theory of Groups, Grad. Stud. in Math., 155, vi+432 pp., (2014) · Zbl 1320.20008
[35] Kowalski, Emmanuel; Michel, P.; VanderKam, J., Rankin-{S}elberg {\(L\)}-functions in the level aspect, Duke Math. J.. Duke Mathematical Journal, 114, 123-191, (2002) · Zbl 1035.11018 · doi:10.1215/S0012-7094-02-11416-1
[36] Laumon, G., The {E}uler-{P}oincar\'e Characteristic ({F}rench). Semi-continuit\'e du conducteur de {S}wan (d’apr\`“es {P}. {D}eligne), Ast\'”erisque, 83, 173-219, (1981) · Zbl 0504.14013
[37] Laumon, G., Transformation de {F}ourier, constantes d’\'equations fonctionnelles et conjecture de {W}eil, Inst. Hautes \'Etudes Sci. Publ. Math.. Institut des Hautes \'Etudes Scientifiques. Publications Math\'ematiques, 131-210, (1987) · Zbl 0641.14009
[38] Laumon, G\'erard, Transformation de {F}ourier homog\`“ene, Bull. Soc. Math. France. Bulletin de la Soci\'”et\'e Math\'ematique de France, 131, 527-551, (2003) · Zbl 1088.11044
[39] Luo, W.; Rudnick, Z.; Sarnak, P., On {S}elberg’s eigenvalue conjecture, Geom. Funct. Anal.. Geometric and Functional Analysis, 5, 387-401, (1995) · Zbl 0844.11038 · doi:10.1007/BF01895672
[40] Milne, James S., \'Etale Cohomology, Princeton Math. Ser., 33, xiii+323 pp., (1980) · Zbl 0433.14012
[41] Munshi, Ritabrata, The Legacy of {S}rinivasa {R}amanujan. Shifted convolution of divisor function {\(d_3\)} and {R}amanujan {\( \tau \)} function, Ramanujan Math. Soc. Lect. Notes Ser., 20, 251-260, (2013) · Zbl 1370.11059
[42] Munshi, Ritabrata, Shifted convolution sums for {\( \text{GL}(3)\times\text{GL}(2)\)}, Duke Math. J.. Duke Mathematical Journal, 162, 2345-2362, (2013) · Zbl 1330.11033 · doi:10.1215/00127094-2371416
[43] Nunes, R. M., Squarefree integers in large arithmetic progressions · Zbl 1394.11009
[44] Orgogozo, Fabrice, Alt\'erations et groupe fondamental premier \`“a {\(p\)}, Bull. Soc. Math. France. Bulletin de la Soci\'”et\'e Math\'ematique de France, 131, 123-147, (2003) · Zbl 1083.14506
[45] Soundararajan, K., Analytic Number Theory. The fourth moment of {D}irichlet {\(L\)}-functions, Clay Math. Proc., 7, 239-246, (2007) · Zbl 1208.11102
[46] Topacogullari, Berke, The shifted convolution of divisor functions, Q. J. Math.. The Quarterly Journal of Mathematics, 67, 331-363, (2016) · Zbl 1356.11070 · doi:10.1093/qmath/haw010
[47] Young, Matthew P., The fourth moment of {D}irichlet {\(L\)}-functions, Ann. of Math.. Annals of Mathematics. Second Series, 173, 1-50, (2011) · Zbl 1296.11112 · doi:10.4007/annals.2011.173.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.