×

On Selberg’s eigenvalue conjecture. (English) Zbl 0844.11038

Suppose that \(\Gamma\) is a congruence subgroup of \(\text{SL} (2, \mathbb{Z})\). Suppose that \(0= \lambda_0< \lambda_1\leq \dots\) are the eigenvalues of the non-Euclidean Laplacian on \(L^2 (\Gamma \setminus H)\), where \(H\) is the Poincaré upper half plane. Selberg conjectured in 1965 that \(\lambda_1\geq 0.25\) and proved that \(\lambda_1\geq 0.1875\). The present paper shows that \(\lambda_1\geq 0.21\). The Selberg conjecture can be viewed as the archimedean analogue of the Ramanujan conjecture bounding Fourier coefficients of Maass wave forms. More progress has been made for the non-archimedean conjectures. The aim of this paper is to “restore the balance and establish in part for the archimedean place what is known at the finite places”. Applications are presented towards the Linnik-Selberg conjecture on the cancellation in sums of Kloosterman sums and to the error term in the prime geodesic theorem for congruence subgroups. For the latter an error term \(O(x^{3/4})\) was known; see P. Sarnak [Ph.D. Thesis (Stanford, 1980)]. The present paper replaces \(.75\) with \(.7\). The natural conjecture here is an error term with exponent \(.5+ \varepsilon\), for any \(\varepsilon>0\).
The proof of the main theorem makes use of various ingredients. Ingredient \(\# 1\) is the Gelbart-Jacquet lift; see S. Gelbart and H. Jacquet [Ann. Sci. Éc. Norm. Supér., IV. Sér. 11, 471-542 (1978; Zbl 0406.10022)]. Ingredient \(\# 2\) is the Rankin-Selberg theory of \(L\)-functions for the general linear group as in H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika [Am. J. Math. 105, 367-464 (1983; Zbl 0525.22018)], F. Shahidi [Am. J. Math. 103, 297-355 (1981; Zbl 0467.12013)], and C. Moeglin and J.-L. Waldspurger [Ann. Sci. Éc. Norm. Supér., IV. Sér. 22, 605-674 (1989; Zbl 0696.10023)]. Another ingredient is Deligne’s bounds on hyper-Kloosterman sums [see P. Deligne, Lect. Notes Math. 569 (1977; Zbl 0345.00010)]. And a final ingredient is an approximate functional equation of a twisted \(L\)-function \(L(s, \chi)= \sum^\infty_{n=1} {{b(n) \chi(n)} \over {n^s}}\), where \(\chi\) is a primitive, non-trivial Dirichlet character \(\text{mod } q\) and the \(b(n)\) are the coefficients of the Dirichlet series for \(L(s, \pi\times \widetilde {\pi})\), where \(\pi\) is a cuspidal automorphic representation of \(\text{GL} (m)\) over \(\mathbb{Q}\). This approximate equation is needed to show that these twisted \(L\)-functions do not vanish at a given point. This gives the main Theorem because of the form of the gamma factor for the twisted Rankin-Selberg \(L\)-function.
The authors note that the full Selberg conjecture (or Ramanujan conjecture) would follow if one knew that for any irreducible cuspidal automorphic representation \(\pi\) and any \(\beta\) with \(\text{Re} (\beta)>0\), there is an even Dirichlet character such that \(L(\beta, \pi\otimes \chi)\neq 0\). Many people have investigated such questions (e.g., G. Shimura, H. Iwaniec, and L. Barthel and D. Ramakrishnan).
It is possible to obtain the estimates in this paper when the field of rational numbers is replaced with a number field. This will appear in a future paper.

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
35P15 Estimates of eigenvalues in context of PDEs
11L05 Gauss and Kloosterman sums; generalizations

References:

[1] [BR]L. Barthel, D. Ramakrishnan, A nonvanishing result for twists ofL-functions ofGL(n), Duke Math. Jour. 74 (1994), 681–700. · Zbl 0826.11022 · doi:10.1215/S0012-7094-94-07425-5
[2] [BDHI]D. Bump, W. Duke, J. Hoffstein, H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Inter. Math. Res. Notices 4 (1992), 75–81. · Zbl 0760.11017 · doi:10.1155/S1073792892000084
[3] [BuGi]D. Bump, D. Ginzburg, Symmetric squareL-functions onGL(r), Ann. of Math. 136 (1992), 137–205. · Zbl 0753.11021 · doi:10.2307/2946548
[4] [D]P. Deligne, SGA 4 1/2 Cohomologie Etale, Lecture Notes in Math. 569, Springer-Verlag 1977.
[5] [DuI]W. Duke, H. Iwaniec, Estimates for coefficients ofL-functions, Proc. C.R.M. Conf. on Automorphic Forms and Analytic Number Theory, Montréal (1989), 43–48.
[6] [GJ]S. Gelbart, H. Jacquet, A relation between automorphic representations ofGL(2) andGL(3), Ann. Sci. Ecole Norm. Sup. 4e série 11 (1978), 471–552.
[7] [GoJ]R. Godement, H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math. 260, Springer-Verlag, 1972. · Zbl 0244.12011
[8] [GolS]D. Goldfeld, P. Sarnak, Sums of Kloosterman sums, Invent. Math. 71 (1983), 243–250. · Zbl 0507.10029 · doi:10.1007/BF01389098
[9] [I]H. Iwaniec, Small eigenvalues of the Laplacian on {\(\Gamma\)}0(N), Acta Arith. 56 (1990), 65–82.
[10] [J]H. Jacquet, PrincipalL-functions of the linear group, Proc. Symp. Pure Math. 33:2, 63–86, American Math. Soc., Providence 1979.
[11] [JP-SS]H. Jacquet, I.I. Piatetski-Shapiro, J.A. Shalika, Rankin-Selberg convolutions, Amer. Jour. of Math 105 (1983), 367–364. · Zbl 0525.22018 · doi:10.2307/2374264
[12] [JSha1]H. Jacquet, J.A. Shalika, On Euler products and the classification of automorphic representations I, Amer. Jour. of Math. 103 (1981), 499–558. · Zbl 0473.12008 · doi:10.2307/2374103
[13] [JSha2]H. Jacquet, J.A. Shalika, Rankin-Selberg convolutions: Archimedean theory, Israel Math. Conf. Proceedings 2 (1990), 125–208. · Zbl 0712.22011
[14] [L]Yu.V. Linnik, Additive problems and eigenvalues of modular operators, Proc. I.C.M. Stockholm (1962), 270–284.
[15] [LuS]W. Luo, P. Sarnak, Quantum Ergodicity of Eigenfunctions onPSL 2(Z)/H 2, preprint (1994).
[16] [MW]C. Moeglin, J.-L. Waldspurger, Le spectre résiduel deGL(n), Ann. Sci. Ecole Norm. Sup. 4 e série 22 (1989), 605–674. · Zbl 0696.10023
[17] [PP-S]S.J. Patterson, I.I. Piatetski-Shapiro, The symmetric squareL-function attached to a cuspidal automorphic representation ofGL(3), Math. Ann. 283 (1989), 551–572. · Zbl 0645.22007 · doi:10.1007/BF01442854
[18] [R]D. Rohrlich, Nonvanishing ofL-functions forGL(2), Invent. Math. 97 (1989), 383–401. · Zbl 0677.10020 · doi:10.1007/BF01389047
[19] [RuS]Z. Rudnick, P. Sarnak, Zeros of PrincipalL-functions and Random Matrix Theory, preprint.
[20] [S]P. Sarnak, Prime Geodesic Theorems, Ph.D. Thesis, Stanford University (1980).
[21] [Se]A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. in Pure Math. 8, Amer. Math. Soc., Providence (1965), 1–15.
[22] [Ser]J.-P. Serre, letter to J.-M. Deshouillers (1981).
[23] [Sh1]F. Shahidi, On certainL-functions, Amer. Jour. of Math. 103 (1981), 297–355. · Zbl 0467.12013 · doi:10.2307/2374219
[24] [Sh2]F. Shahidi, On the Ramanujan conjectures and finiteness of poles for certainL-functions, Ann. of Math. 127 (1988), 547–584. · Zbl 0654.10029 · doi:10.2307/2007005
[25] [Shi]G. Shimura, On the periods of modular forms, Math. Ann. 229 (1977), 211–221. · Zbl 0363.10019 · doi:10.1007/BF01391466
[26] [We]A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. 34 (1948), 204–207. · Zbl 0032.26102 · doi:10.1073/pnas.34.5.204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.