×

Inference of the bottom topography in anisothermal mildly-sheared shallow ice flows. (English) Zbl 1440.86010

Summary: This study proposes a new inverse method to estimate the bed topography elevation beneath glaciers flows from surface observations (altimetry elevations and InSAR velocities) and (very) sparse depth measurements (e.g. acquired during airborne campaigns). To do so an original form of depth-integrated flow equations (long-wave assumption) is derived. The latter are valid for highly to mildly-sheared regimes hence including moderately fast flows; varying internal thermal profiles are taken into account. The inverse problem is particularly challenging since the surface signatures integrate the bottom features (bed elevation and friction-slip amount) plus the internal deformation. The first key ingredient of the inverse method is the derivation of this non-isothermal Reduced Uncertainty (RU) version of the classical SIA equation (lubrication type model for generalised Newtonian fluids) by intrinsically integrating the surface measurements in the formulation. This resulting multi-physics RU-SIA equation contains a unique uncertain dimensionless parameter only (the parameter \(\gamma)\). The next key ingredient is an advanced Variational Data Assimilation (VDA) formulation combined with a purely data-driven extension of \(\gamma\) based on the trend observed in the (sparse) depth measurements (e.g. along the flight tracks). The resulting inverse method provides the first physical-based depth estimations in mildly-sheared mildly-slippery shallow flows. In poorly monitored ice-sheet areas (e.g. in Antarctica), the resulting estimations are noticeably less uncertain than the current ones (in particular compared to those obtained by gravimetry inversions). The present numerical experiments and experimental sensitivity analyses demonstrate the reliability of this new RU-SIA equation and the robustness of the inverse method. In other respect, the RU-SIA equation may provide a-posteriori estimations of the thermal boundary layer at bottom.

MSC:

86A40 Glaciology
86A22 Inverse problems in geophysics

Software:

FEniCS; DOLFIN; Gmsh

References:

[1] Howat, I. M.; Negrete, A.; Smith, B. E., The greenland ice mapping project (GIMP) land classification and surface elevation data sets, Cryosphere, 8, 4, 1509-1518 (2014)
[2] Mouginot, J.; Rignot, E.; Scheuchl, B.; Millan, R., Comprehensive annual ice sheet velocity mapping using landsat-8, sentinel-1, and RADARSAT-2 data, Remote Sens., 9, 4, 364 (2017)
[3] Bamber, J.; Griggs, J.; Hurkmans, R.; Dowdeswell, J.; Gogineni, S.; Howat, I.; Mouginot, J.; Paden, J.; Palmer, S.; Rignot, E., A new bed elevation dataset for greenland, Cryosphere, 7, 2, 499-510 (2013)
[4] Fretwell, P.; Pritchard, H.; Vaughan, D.; Bamber, J.; Barrand, N.; Bell, R.; Bianchi, C., Bedmap2: improved ice bed, surface and thickness datasets for antarctica, Cryosphere, 7, 1 (2013)
[5] Rasmussen, L., Bed topography and mass-balance distribution of columbia glacier, alaska, USA, determined from sequential aerial photography, J. Glaciol., 34, 117, 208-216 (1988)
[6] Morlighem, M., Ice sheet properties inferred by combining numerical modeling and remote sensing data (2011), PhD Ecole Centrale de Paris, (PhD thesis)
[7] Morlighem, M.; Rignot, E.; Mouginot, J.; Seroussi, H.; Larour, E., High-resolution ice-thickness mapping in south greenland, Ann. Glaciol., 55, 67, 64-70 (2014)
[8] Michel, L.; Picasso, M.; Farinotti, D.; Bauder, A.; Funk, M.; Blatter, H., Estimating the ice thickness of mountain glaciers with an inverse approach using surface topography and mass-balance, Inverse Problems, 29, 3, 035002 (2013) · Zbl 1267.86012
[9] Michel, L.; Picasso, M.; Farinotti, D.; Funk, M.; Blatter, H., Estimating the ice thickness of shallow glaciers from surface topography and mass-balance data with a shape optimization algorithm, Comput. Geosci., 66, 182-199 (2014)
[10] Sellier, M., Inverse problems in free surface flows: a review, Acta Mech., 227, 3, 913-935 (2016) · Zbl 1381.76008
[11] Gudmundsson, G., Transmission of basal variability to a glacier surface, J. Geophys. Res.: Solid Earth, 108, B5 (2003)
[12] Gudmundsson, G., Analytical solutions for the surface response to small amplitude perturbations in boundary data in the shallow-ice-stream approximation, Cryosphere, 2, 2, 77-93 (2008)
[13] Martin, N.; Monnier, J., Adjoint accuracy for the full-Stokes ice flow model: limits to the transmission of basal friction variability to the surface, Cryosphere, 8, 721-741 (2014)
[14] Martin, N.; Monnier, J., Inverse rheometry and basal properties inference for pseudoplastic geophysical flows, Eur. J. Mech. B Fluids, 50, 110-126 (2015) · Zbl 1408.76015
[15] Warner, R.; Budd, W., Derivation of ice thickness and bedrock topography in data-gap regions over antarctica, Ann. Glaciol., 31, 1, 191-197 (2000)
[16] Thorsteinsson, T.; Raymond, C. F.; Gudmundsson, H.; Bindschadler, R. A.; Vornberger, P.; Joughin, I., Bed topography and lubrication inferred from surface measurements on fast-flowing ice streams, J. Glaciol., 49, 167, 481-490 (2003)
[17] Heining, C.; Sellier, M., Direct reconstruction of three-dimensional glacier bedrock and surface elevation from free surface velocity, AIMS Geosci., 2, 45-63 (2016)
[18] Sellier, M.; Gessese, A.; Heining, C., Analytical and numerical bedrock reconstruction in glacier flows from free surface elevation data, Res. Rep. (2012)
[19] Monnier, J.; des Boscs, P.-E., Inference of the bottom properties in shallow ice approximation models, Inverse Problems, 33, 11, 115001 (2017) · Zbl 1375.86017
[20] Fowler, A.; Larson, D., On the flow of polythermal glaciers. i. model and preliminary analysis, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 363, 217-242 (1978), The Royal Society
[21] Hutter, K., Theoritical Glaciology (1983), Norwell Mass.
[23] Baral, D. R.; Hutter, K., Asymptotic theories of ice sheets and ice shelves, (Geomorphological Fluid Mechanics (2001), Springer), 227-278 · Zbl 1091.86001
[24] Boutounet, M.; Monnier, J.; Vila, J.-P., Multi-regime shallow free surface laminar flow models for quasi-Newtonian fluids, Eur. J. Mech. B Fluids, 55, 182-206 (2016) · Zbl 1408.76036
[25] Sasaki, Y., Some Basic Formalisms in Numerical Variational Analysis (1970), Citeseer
[26] LeDimet, F.-X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38, 2, 97-110 (1986)
[27] Bouttier, F.; Courtier, P., Data assimilation concepts and methods march 1999, Meteorol. Train. Course Lecture Ser. ECMWF (2002)
[28] Monnier, J., (Variational Data Assimilation: from Least-square Solutions and Optimal Control to the Assimilation of Databases Into Physical-based Models. Variational Data Assimilation: from Least-square Solutions and Optimal Control to the Assimilation of Databases Into Physical-based Models, Open Online Course (videos with the accompanying manuscript -143 pages) (2018), INSA - University of Toulouse), https://www.math.univ-toulouse.fr/ jmonnie/Enseignement/VDA.html
[29] Cacuci, D. G.; Navon, I. M.; Ionescu-Bujor, M., Computational Methods for Data Evaluation and Assimilation (2016), Chapman and Hall/CRC
[30] Lions, J.-L., Optimal Control of Systems Governed by Partial Differential Equations, Vol. 170 (1971), Springer Verlag · Zbl 0203.09001
[31] Chilès, J. P.; Delfiner, P., Geostatistics: Modeling Spatial Uncertainty, 695 (1999), John Wiley & Sons Inc., New York · Zbl 0922.62098
[32] Alnæs, M.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.; Wells, E.; Garth, N., The fenics project version 1.5, Arch. Numer. Softw., 3, 100, 9-23 (2015)
[33] Logg, A.; Wells, G.; Hake, J., DOLFIN: A c++/python finite element library, (Automated Solution of Differential Equations By the Finite Element Method (2012), Springer), 173-225
[34] J. Monnier, J. Zhu, DassFlow: Data Assimilation for Free Surface Flows, INSA - University of Toulouse, CNES, http://www.math.univ-toulouse.fr/DassFlow; J. Monnier, J. Zhu, DassFlow: Data Assimilation for Free Surface Flows, INSA - University of Toulouse, CNES, http://www.math.univ-toulouse.fr/DassFlow
[35] Noël, B.; van de Berg, W. J.; Wessem, V.; Melchior, J.; Van Meijgaard, E.; Van As, D.; Lenaerts, J.; Lhermitte, S.; Munneke, P. K.; Smeets, C. J.P., Modelling the climate and surface mass balance of polar ice sheets using racmO2-part 1: Greenland (1958-2016), Cryosphere, 12, 3, 811-831 (2018)
[36] Fowler, A., Mathematical Geoscience, Vol. 36 (2011), Springer · Zbl 1219.86001
[37] Prandtl, L., Zur berechnung der grenzschichten, ZAMM - J. Appl. Math. Mech. / Z Angew. Math. Mech., 18, 1, 77-82 (1938), (Translated as ‘Note on the calculation of boundary layers’, Tech. Memor. nat. adv. Comm. Aero., Wash.959.) · JFM 64.0872.03
[38] Greve, R.; Blater, H., (Dynamics of Ice Sheets and Glaciers. Dynamics of Ice Sheets and Glaciers, Advances in Geophysical and Environmental Mechanics and Mathematics (2009), Springer-Verlag)
[39] Schoof, C.; Hindmarsh, C., Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models, Q. J. Mech. Appl. Math., 63, 1, 73-114 (2010) · Zbl 1395.76011
[40] Radok, U.; Jenssen, D.; Budd, W., Steady-state temperature profiles in ice sheets, Bull. Int. Assoc. Sci. Hydrol, 8, 1, 36 (1970)
[41] Price, P. B.; Nagornov, O. V.; Bay, R.; Chirkin, D.; He, Y.; Miocinovic, P.; Richards, A.; Woschnagg, K.; Koci, B.; Zagorodnov, V., Temperature profile for glacial ice at the south pole: Implications for life in a nearby subglacial lake, Proc. Natl. Acad. Sci., 99, 12, 7844-7847 (2002)
[42] Seroussi, H.; Morlighem, M.; Rignot, E.; Khazendar, A.; Larour, E.; Mouginot, J., Dependence of century-scale projections of the greenland ice sheet on its thermal regime, Int. Glacio. Soc., 59, 1024-1034 (2013)
[43] van Wessem, J.; Jan Van De Berg, W.; Noël, B.; Van Meijgaard, E.; Amory, C.; Birnbaum, G.; Jakobs, C.; Krüger, K.; Lenaerts, J.; Lhermitte, S., Modelling the climate and surface mass balance of polar ice sheets using racmO2: Part 2: Antarctica (1979-2016), Cryosphere, 12, 4, 1479-1498 (2018)
[44] Kaltenbacher, B.; Neubauer, A.; Scherzer, O., Iterative Regularization Methods for Nonlinear Ill-posed Problems, Vol. 6 (2008), Walter de Gruyter · Zbl 1145.65037
[45] Lorenc, A. C.; Ballard, S. P.; Bell, R. S.; Ingleby, N. B.; Andrews, P. L.F.; Barker, D. M.; Bray, J. R.; Clayton, A. M.; Dalby, T.; Li, D., The met. office global three-dimensional variational data assimilation scheme, Q. J. R. Meteorol. Soc., 126, 570, 2991-3012 (2000)
[46] Weaver, A.; Courtier, P., Correlation modelling on the sphere using a generalized diffusion equation, Q. J. R. Meteorol. Soc., 127, 575, 1815-1846 (2001)
[47] Cullen, M. J.P., Four-dimensional variational data assimilation: A new formulation of the background-error covariance matrix based on a potential-vorticity representation, Q. J. R. Meteorol. Soc., 129, 593, 2777-2796 (2003)
[48] Bannister, R. N., A review of forecast error covariance statistics in atmospheric variational data assimilation. i: Characteristics and measurements of forecast error covariances, Q. J. R. Meteorol. Soc., 134, 637, 1951-1970 (2008)
[49] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, Vol. 89 (2005), siam · Zbl 1074.65013
[50] Haben, S. A.; Lawless, A. S.; Nichols, N. K., Conditioning of incremental variational data assimilation, with application to the met office system, Tellus A, 63, 4, 782-792 (2011)
[51] Katz, D.; Lawless, A. S.; Nichols, N. K.; Cullen, M. J. P.; Bannister, R. N., Correlations of control variables in variational data assimilation, Q. J. R. Meteorol. Soc., 137, 656, 620-630 (2011)
[52] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems, Vol. 375 (1996), Springer Science & Business Media · Zbl 0859.65054
[53] Morozov, V. A.; Stessin, M., Regularization Methods for Ill-posed Problems (1993), CRC press Boca Raton, FL: · Zbl 0848.65046
[54] Williams, C. R.; Hindmarsh, R.; Arthern, R., Calculating balance velocities with a membrane stress correction, J. Glaciol., 60, 220, 294-304 (2014)
[55] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[56] Hutchinson, M. F., A new procedure for gridding elevation and stream line data with automatic removal of spurious pits, J. Hydrol., 106, 3-4, 211-232 (1989)
[57] Wahba, G., Spline Models for Observational Data, Vol. 59 (1990), Siam · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.