×

Closed-form Saint-Venant solutions in the Koiter theory of shells. (English) Zbl 1440.74203

Summary: In this paper we investigate the deformation of cylindrical linearly elastic shells using the Koiter model. We formulate and solve the relaxed Saint-Venant’s problem for thin cylindrical tubes made of isotropic and homogeneous elastic materials. To this aim, we adapt a method established previously in the three-dimensional theory of elasticity. We present a general solution procedure to determine closed-form solutions for the extension, bending, torsion and flexure problems. We remark the analogy and formal resemblance of these solutions to the classical Saint-Venant’s solutions for solid cylinders. The special case of circular cylindrical shells is also discussed.

MSC:

74K25 Shells
74G05 Explicit solutions of equilibrium problems in solid mechanics
74B05 Classical linear elasticity

References:

[1] Altenbach, H.; Zhilin, P., A general theory of elastic simple shells, Usp. Mekh., 11, 107-148 (1988)
[2] Altenbach, H.; Zhilin, P.; Kienzler, R.; Altenbach, H.; Ott, I., The theory of simple elastic shells, Theories of Plates and Shells. Critical Review and New Applications, Euromech Colloquium, 1-12 (2004), Heidelberg: Springer, Heidelberg · Zbl 1182.74142
[3] Berdichevsky, V.; Armanios, E.; Badir, A., Theory of anisotropic thin-walled closed-cross-section beams, Comput. Eng., 2, 411-432 (1992)
[4] Berdichevsky, V.; Misyura, V., Effect of accuracy loss in classical shell theory, J. Appl. Mech., 59, S217-S223 (1992) · Zbl 0770.73047 · doi:10.1115/1.2899492
[5] Bîrsan, M., The solution of Saint-Venant’s problem in the theory of Cosserat shells, J. Elast., 74, 185-214 (2004) · Zbl 1058.74057 · doi:10.1023/B:ELAS.0000039621.94195.f0
[6] Bîrsan, M., On Saint-Venant’s problem for anisotropic, inhomogeneous, cylindrical Cosserat elastic shells, Int. J. Eng. Sci., 47, 21-38 (2009) · Zbl 1213.74142 · doi:10.1016/j.ijengsci.2008.06.015
[7] Bîrsan, M., Thermal stresses in cylindrical Cosserat elastic shells, Eur. J. Mech. A, Solids, 28, 94-101 (2009) · Zbl 1155.74377 · doi:10.1016/j.euromechsol.2008.03.001
[8] Bîrsan, M.; Altenbach, H.; Altenbach, H.; Eremeyev, V., Analysis of the deformation of multi-layered orthotropic cylindrical elastic shells using the direct approach, Shell-Like Structures: Non-classical Theories and Applications, 29-52 (2011), Berlin: Springer, Berlin
[9] Bîrsan, M.; Sadowski, T.; Pietras, D., Thermoelastic deformations of cylindrical multi-layered shells using a direct approach, J. Therm. Stresses, 36, 749-789 (2013) · doi:10.1080/01495739.2013.764802
[10] Ciarlet, P., Mathematical Elasticity, Vol. III: Theory of Shells (2000), Amsterdam: North-Holland, Amsterdam · Zbl 0953.74004
[11] Ciarlet, P., An Introduction to Differential Geometry with Applications to Elasticity (2005), Dordrecht: Springer, Dordrecht · Zbl 1100.53004
[12] Goldenveizer, A., Theory of Elastic Thin Shells (1961), New York: Pergamon Press, New York
[13] Ieşan, D., On Saint-Venant’s problem, Arch. Ration. Mech. Anal., 91, 363-373 (1986) · Zbl 0602.73005 · doi:10.1007/BF00282340
[14] Ieşan, D., Saint-Venant’s Problem (1987), New York: Springer, New York · Zbl 0625.73030
[15] John, F., Estimates for the derivatives of the stresses in a thin shell and interior shell equations, Commun. Pure Appl. Math., 18, 235-267 (1965) · doi:10.1002/cpa.3160180120
[16] Koiter, W.; Koiter, W., A consistent first approximation in the general theory of thin elastic shells, The Theory of Thin Elastic Shells, IUTAM Symposium Delft 1960, 12-33 (1960), Amsterdam: North-Holland, Amsterdam · Zbl 0109.43002
[17] Koiter, W., On the foundations of the linear theory of thin elastic shells, Proc. K. Ned. Akad. Wet., Ser. B, 73, 169-195 (1970) · Zbl 0213.27002
[18] Koiter, W., On the mathematical foundation of shell theory, Proc. Int. Congr. Math. Nice, 123-130 (1970), Paris: Gauthier-Villars, Paris · Zbl 0232.73094
[19] Koiter, W.; Simmonds, J.; Becker, E., Foundations of shell theory, Theoretical and Applied Mechanics, 150-176 (1973), Heidelberg: Springer, Heidelberg · Zbl 0286.73068
[20] Ladevèze, P., Justification de la théorie linéaire des coques élastiques, J. Méc., 15, 813-856 (1976) · Zbl 0356.73067
[21] Ladevèze, P.; Sanchez, P.; Simmonds, J., Beamlike (Saint-Venant) solutions for fully anisotropic elastic tubes of arbitrary cross section, Int. J. Solids Struct., 41, 1925-1944 (2004) · Zbl 1140.74485 · doi:10.1016/j.ijsolstr.2003.11.006
[22] Love, A., A Treatise on the Mathematical Theory of Elasticity (1944), New York: Dover, New York · Zbl 0063.03651
[23] Lurie, A., Statics of Thin-Walled Elastic Shells (1947), Moscow - Leningrad: Gostekhizdat, Moscow - Leningrad
[24] Morgenstern, D., Mathematische Begründung der Scheibentheorie (zweidimensionale Elastizitätstheorie), Arch. Ration. Mech. Anal., 3, 91-96 (1959) · Zbl 0084.40502 · doi:10.1007/BF00284167
[25] Novozhilov, V., The Theory of Thin Shells (1959), Groningen: Noordhoff, Groningen · Zbl 0085.18803
[26] Reissner, E., On torsion of thin cylindrical shells, J. Mech. Phys. Solids, 7, 157-162 (1959) · Zbl 0212.57503 · doi:10.1016/0022-5096(59)90002-X
[27] Reissner, E.; Tsai, W., Pure bending, stretching, and twisting of anisotropic cylindrical shells, J. Appl. Mech., 39, 148-154 (1972) · Zbl 0229.73083 · doi:10.1115/1.3422604
[28] de Saint-Venant, B., Mémoire sur le calcul des pièces solides à simple ou à double courbure, et prenant simultanément en considération les divers efforts auxquelles elles peuvent être soumises dans tous les sens, C. R. Acad. Sci. Paris, 17, 942-954 (1843)
[29] Sokolnikoff, I., Mathematical Theory of Elasticity (1956), New York: McGraw-Hill, New York · Zbl 0070.41104
[30] Steigmann, D., Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity, J. Elast., 111, 91-107 (2013) · Zbl 1315.74016 · doi:10.1007/s10659-012-9393-2
[31] Timoshenko, S.; Goodier, J., Theory of Elasticity (1951), New York: McGraw-Hill, New York · Zbl 0045.26402
[32] Ventsel, E.; Krauthammer, T., Thin Plates and Shells: Theory, Analysis, and Applications (2001), New York: Taylor & Francis, New York
[33] Vlasov, V., General Theory of Shells and Its Application in Engineering (1949), Moscow: Gostekhizdat, Moscow
[34] Zhilin, P., Mechanics of deformable directed surfaces, Int. J. Solids Struct., 12, 635-648 (1976) · doi:10.1016/0020-7683(76)90010-X
[35] Zhilin, P., Applied Mechanics - Foundations of Shell Theory (2006), Sankt Petersburg: State Polytechnical University Publisher, Sankt Petersburg
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.