×

Superconvergent patch recovery and a posteriori error estimation technique in adaptive isogeometric analysis. (English) Zbl 1439.74437

Summary: In this article, we address adaptive methods for isogeometric analysis based on local refinement guided by recovery based a posteriori error estimates. Isogeometric analysis was introduced a decade ago and an impressive progress has been made related to many aspects of numerical methods and advanced applications. However, related to adaptive mesh refinement guided by a posteriori error estimators, rather few attempts are pursued besides the use of classical residual based error estimators. In this article, we explore a feature common for Isogeometric analysis (IGA), namely the use of structured tensorial meshes that facilitates superconvergence behavior of the gradient in the Galerkin discretization. By utilizing the concept of structured mesh refinement using LR B-splines, our aim is to facilitate superconvergence behavior for locally refined meshes as well. Superconvergence behavior matches well with the use of recovery based a posteriori estimator in the Superconvergent Patch Recovery (SPR) procedure. However, to our knowledge so far, the SPR procedure has not been exploited in the IGA community. We start out by addressing the existence of derivative superconvergent points in the computed finite element solution based on B-splines and LR B-splines for an elliptic model problem (1D and 2D Poisson). Then, we present some recovery procedures for improving the derivatives (or gradient) of the isogeometric finite element solution where the SPR procedure will be the main focus. In particular, we show that our SPR procedure for the improvement of derivatives fulfills the desired consistency criteria. At the end, we develop a posteriori error estimator where the improved gradient obtained from the proposed recovery procedures is used. Numerical results are presented to illustrate the efficiency of using SPR procedure for the improvement of derivatives (or gradient) of computed solution in isogeometric analysis. Then the proposed a posteriori error estimator based adaptive refinement methodology is tested to solve smooth and non-smooth elliptic benchmark problems. The focus is put on whether optimal convergence rates are obtained in the computed solution or not, as well as the effectivity index of the proposed error estimators.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D07 Numerical computation using splines
65N15 Error bounds for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs

Software:

ISOGAT

References:

[1] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis. Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[3] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113
[4] Beirão da Veiga, L.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for \(h-p-k\)-refinement in isogeometric analysis, Numer. Math., 118, 2, 271-305 (2011) · Zbl 1222.41010
[5] Beirão da Veiga, L.; Cho, D.; Sangalli, G., Anisotropic NURBS approximation in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 209/212, 1-11 (2012) · Zbl 1243.65027
[6] Beirão da Veiga, L.; Buffa, A.; Sangalli, G.; Vázquez, R., Mathematical analysis of variational isogeometric methods, Acta Numer., 23, 157-287 (2014) · Zbl 1398.65287
[7] Dokken, T.; Lyche, T.; Pettersen, K. F., Polynomial splines over locally refined box-partitions, Comput. Aided Geom. Design, 30, 3, 331-356 (2013) · Zbl 1264.41011
[8] Johannessen, K. A.; Kvamsdal, T.; Dokken, T., Isogeometric analysis using LR B-splines, Comput. Methods Appl. Mech. Engrg., 269, 471-514 (2014) · Zbl 1296.65021
[9] Kumar, M.; Kvamsdal, T.; Johannessen, K. A., A simple a posteriori error estimatior in adaptive isogeometric analysis, Comput. Math. Appl., 70, 7, 1555-1582 (2015) · Zbl 1443.65355
[10] Bressan, A., Some properties of LR-splines, Comput. Aided Geom. Design, 30, 8, 778-794 (2013) · Zbl 1284.65024
[11] Johannessen, K. A.; Kumar, M.; Kvamsdal, T., Divergence-conforming discretization for Stokes problem on locally refined meshes using LR B-splines, Comput. Methods Appl. Mech. Engrg., 293, 38-70 (2015) · Zbl 1423.76242
[12] Bekele, Y. W.; Kvamsdal, T.; Kvarving, A. M.; Nordal, S., Adaptive isogeometric finite element analysis of steady-state groundwater flow, Int. J. Numer. Anal. Methods Geomech., 40(5), 738-765 (2016)
[13] Johannessen, K. A.; Remonato, F.; Kvamsdal, T., On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines, Comput. Methods Appl. Mech. Engrg., 291, 64-101 (2015) · Zbl 1425.65027
[14] Stahl, A.; Kvamsdal, T.; Schellewald, C., Post-processing and visualization techniques for isogeometric analysis results, Comput. Methods Appl. Mech. Engrg., 316, 880-943 (2017) · Zbl 1439.65029
[15] Sederberg, T. W.; Zheng, J.; Bakenov, A.; Nasri, A., T-splines and t-nurccs, ACM Trans. Graph., 22, 3, 477-484 (2003)
[16] Bazilevs, Y.; Calo, V. M.; Cottrell, J. A.; Evans, J. A.; Hughes, T. J.R.; Lipton, S.; Scott, M. A.; Sederberg, T. W., Isogeometric analysis using t-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 229-263 (2010) · Zbl 1227.74123
[17] Dörfel, M. R.; Jüttler, B.; Simeon, B., Adaptive isogeometric analysis by local \(h\)-refinement with T-splines, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 264-275 (2010) · Zbl 1227.74125
[18] Scott, M. A.; Li, X.; Sederberg, T. W.; Hughes, T. J.R., Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213/216, 206-222 (2012) · Zbl 1243.65030
[19] Kraft, R., Adaptive and Linearly Independent Multilevel B-splines. Bericht. SFB 404 (1997), Geschäftsstelle
[20] Giannelli, C.; Jüttler, B.; Speleers, H., Thb-splines: the truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498 (2012) · Zbl 1252.65030
[21] Vuong, A.-V.; Giannelli, C.; Jüttler, B.; Simeon, B., A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200, 49-52, 3554-3567 (2011) · Zbl 1239.65013
[22] Babuška, I.; Rheinboldt, W. C., Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15, 4, 736-754 (1978) · Zbl 0398.65069
[23] Babuška, I.; Rheinboldt, W. C., A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg., 12, 1597-1615 (1978) · Zbl 0396.65068
[24] Ainsworth, M.; Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis (2000), John Wiley & Sons: John Wiley & Sons New York · Zbl 1008.65076
[25] Ladevèze, P.; Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., 20, 3, 485-509 (1983) · Zbl 0582.65078
[26] Parés, N.; Santos, H.; Díez, P., Guaranteed energy error bounds for the Poisson equation using a flux-free approach: solving the local problems in subdomains, Internat. J. Numer. Methods Engrg., 79, 10, 1203-1244 (2009) · Zbl 1176.65127
[27] Díez, P.; Parés, N.; Huerta, A., Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates, Internat. J. Numer. Methods Engrg., 56, 10, 1465-1488 (2003) · Zbl 1052.65105
[28] Ainsworth, M.; Oden, J. T., A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg., 142, 1-2, 1-88 (1997) · Zbl 0895.76040
[29] Verfürth, R., A posteriori error estimation techniques for finite element methods, (Numerical Mathematics and Scientific Computation (2013), Oxford University Press: Oxford University Press Oxford) · Zbl 1279.65127
[30] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 2, 337-357 (1987) · Zbl 0602.73063
[31] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. I. The recovery technique, Internat. J. Numer. Methods Engrg., 33, 7, 1331-1364 (1992) · Zbl 0769.73084
[32] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. II. Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33, 7, 1365-1382 (1992) · Zbl 0769.73085
[33] Díez, P.; Ródenas, J. J.; Zienkiewicz, O. C., Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error, Internat. J. Numer. Methods Engrg., 69, 10, 2075-2098 (2007) · Zbl 1194.74382
[34] Kvamsdal, T.; Okstad, K. M., Error estimation based on superconvergent patch recovery using statically admissible stress fields, Internat. J. Numer. Methods Engrg., 42, 3, 443-472 (1998) · Zbl 0908.73076
[35] Okstad, K. M.; Kvamsdal, T.; Mathisen, K. M., Superconvergent patch recovery for plate problems using statically admissible stress resultant fields, Internat. J. Numer. Methods Engrg., 44, 5, 697-727 (1999) · Zbl 0939.74070
[36] Bordas, S.; Duflot, M., Derivative recovery and a posteriori error estimate for extended finite elements, Comput. Methods Appl. Mech. Engrg., 196, 35-36, 3381-3399 (2007) · Zbl 1173.74401
[37] Bordas, S.; Duflot, M.; Le, P., A simple error estimator for extended finite elements, Commun. Numer. Methods Eng., 24, 11, 961-971 (2008) · Zbl 1156.65093
[38] González-Estrada, O. A.; Natarajan, S.; Ródenas, J. J.; Nguyen-Xuan, H.; Bordas, S. P.A., Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity, Comput. Mech., 52, 1, 37-52 (2013) · Zbl 1308.74025
[39] Buffa, A.; Cho, D.; Kumar, M., Characterization of T-splines with reduced continuity order on T-meshes, Comput. Methods Appl. Mech. Engrg., 201/204, 112-126 (2012) · Zbl 1239.65012
[40] Buffa, A.; Giannelli, C., Adaptive isogeometric methods with hierarchical splines: error estimator and convergence, Math. Models Methods Appl. Sci., 26, 1, 1-25 (2016) · Zbl 1336.65181
[41] Johannessen, K. A., An Adaptive Isogeometric Finite Element Analysis (2009), Norwegian University of Science and Technology: Norwegian University of Science and Technology Norway, (Master thesis)
[42] Kleiss, S. K.; Tomar, S., Guaranteed and sharp a posteriori error estimates in isogeometric analysis, Comput. Math. Appl., 70, 3, 167-190 (2015) · Zbl 1443.65353
[43] Scott, M. A.; Thomas, D. C.; Evans, E. J., Isogeometric spline forests, Comput. Methods Appl. Mech. Engrg., 269, 222-264 (2014) · Zbl 1296.65023
[44] Tian, L.; Chen, F.; Du, Q., Adaptive finite element methods for elliptic equations over hierarchical T-meshes, J. Comput. Appl. Math., 236, 5, 878-891 (2011) · Zbl 1231.65222
[45] Wang, P.; Xu, J.; Deng, J.; Chen, F., Adaptive isogeometric analysis using rational pht-splines, Comput.-Aided Des., 43, 11, 1438-1448 (2011)
[46] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Engrg., 200, 23-24, 2021-2031 (2011) · Zbl 1228.65232
[47] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput.-Aided Des., 45, 4, 812-821 (2013)
[48] Bank, R. E.; Smith, R. K., A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal., 30, 4, 921-935 (1993) · Zbl 0787.65078
[49] Repin, S. I., A posteriori error estimates for approximate solutions to variational problems with strongly convex functionals, J. Math. Sci. (N. Y.), 97, 4, 4311-4328 (1999)
[50] Repin, S. I., A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., 69, 230, 481-500 (2000) · Zbl 0949.65070
[51] Babuška, I.; Strouboulis, T.; Upadhyay, C. S., A model study of the quality of a posteriori error estimators for linear elliptic problems. Error estimation in the interior of patchwise uniform grids of triangles, Comput. Methods Appl. Mech. Engrg., 114, 3-4, 307-378 (1994)
[52] Babuška, I.; Strouboulis, T.; Upadhyay, C. S., A model study of the quality of a posteriori error estimators for finite element solutions of linear elliptic problems, with particular reference to the behavior near the boundary, Internat. J. Numer. Methods Engrg., 40, 14, 2521-2577 (1997) · Zbl 0883.65080
[53] Babuška, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K.; Copps, K., Validation of a posteriori error estimators by numerical approach, Internat. J. Numer. Methods Engrg., 37, 7, 1073-1123 (1994) · Zbl 0811.65088
[54] Oganesjan, L. A.; Ruhovec, L. A., An investigation of the rate of convergence of variation-difference schemes for second order elliptic equations in a two-dimensional region with smooth boundary, Zh. Vychisl. Mat. Mat. Fiz., 9, 1102-1120 (1969) · Zbl 0234.65093
[55] Douglas, J.; Dupont, T., Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, (Topics in Numerical Analysis (Proc. Roy. Irish ACAD. Conf., University Coll., Dublin, 1972) (1973), Academic Press: Academic Press London), 89-92 · Zbl 0277.65052
[56] Andreev, A. B.; Lazarov, R. D., Superconvergence of the gradient for quadratic triangular finite elements, Numer. Methods Partial Differential Equations, 4, 1, 15-32 (1988) · Zbl 0644.65082
[57] Babuška, I.; Strouboulis, T.; Gangaraj, S. K.; Upadhyay, C. S., \( \eta \%\)-superconvergence in the interior of locally refined meshes of quadrilaterals: superconvergence of the gradient in finite element solutions of Laplace’s and Poisson’s equations, Appl. Numer. Math., 16, 1-2, 3-49 (1994) · Zbl 0823.65101
[58] Babus˘ka, I.; Strouboulis, T.; Upadhyay, C. S.; Gangaraj, S. K., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations, Numer. Methods Partial Differential Equations, 12, 3, 347-392 (1996) · Zbl 0854.65089
[59] Douglas, J.; Dupont, T.; Wheeler, M. F., An \(L^\infty\) estimate and a superconvergence result for a Galerkin method for elliptic equations based on tensor products of piecewise polynomials, Rev. Française Automat. Informat. Recherche Opérationnelle Sér Rouge, 8, R-2, 61-66 (1974) · Zbl 0315.65062
[60] Křížek, M., Superconvergence phenomena on three-dimensional meshes, Int. J. Numer. Anal. Model., 2, 1, 43-56 (2005) · Zbl 1071.65139
[61] Křížek, M.; Neittaanmäki, P., Bibliography on superconvergence, (Finite Element Methods (Jyväskylä, 1997). Finite Element Methods (Jyväskylä, 1997), Lecture Notes in Pure and Appl. Math., vol. 196 (1998), Dekker: Dekker New York), 315-348 · Zbl 0902.65001
[62] Lesaint, P.; Zlámal, M., Superconvergence of the gradient of finite element solutions, RAIRO Anal. Numér., 13, 2, 139-166 (1979) · Zbl 0412.65051
[63] Schatz, A. H., Pointwise error estimates, superconvergence and extrapolation, (Finite Element Methods (Jyväskylä, 1997). Finite Element Methods (Jyväskylä, 1997), Lecture Notes in Pure and Appl. Math., vol. 196 (1998), Dekker: Dekker New York), 237-247 · Zbl 0902.65052
[64] Schatz, A. H.; Sloan, I. H.; Wahlbin, L. B., Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 33, 2, 505-521 (1996) · Zbl 0855.65115
[65] Thomée, V., High order local approximations to derivatives in the finite element method, Math. Comp., 31, 139, 652-660 (1977) · Zbl 0367.65055
[66] Thomée, V., Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Comp., 34, 149, 93-113 (1980) · Zbl 0454.65077
[67] Zhang, Z., Derivative superconvergent points in finite element solutions of Poisson’s equation for the serendipity and intermediate families—a theoretical justification, Math. Comp., 67, 222, 541-552 (1998) · Zbl 0893.65056
[68] Zhang, Z., Derivative superconvergent points in finite element solutions of harmonic functions—a theoretical justification, Math. Comp., 71, 240, 1421-1430 (2002), (electronic) · Zbl 1007.65081
[69] Babuška, I.; Strouboulis, T., The finite element method and its reliability, (Numerical Mathematics and Scientific Computation (2001), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York) · Zbl 0997.74069
[70] Chen, C. M., Structure Theory of Superconvergence of Finite Elements (2001), Hunan Science and Technology Publishing House: Hunan Science and Technology Publishing House Changsha, (in Chinese)
[71] Chen, C. M.; Huang, Y. Q., High Accuracy Theory of Finite Element Methods (1995), Hunan Science and Technology Publishing House: Hunan Science and Technology Publishing House Changsha, (in Chinese)
[72] Wahlbin, L. B., Superconvergence in Galerkin finite element methods, (Lecture Notes in Mathematics, vol. 1605 (1995), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0826.65092
[73] Zhu, C. D.; Lin, Q., The Superconvergence Theory of the Finite Element Method (1989), Hunan Science and Technology Publishing House: Hunan Science and Technology Publishing House Changsha, (in Chinese)
[74] Anitescu, C.; Jia, Y.; Zhang, Y. J.; Rabczuk, T., An isogeometric collocation method using superconvergent points, Comput. Methods Appl. Mech. Engrg., 284, 1073-1097 (2015) · Zbl 1425.65193
[75] Ainsworth, M.; Craig, A., A posteriori error estimators in the finite element method, Numer. Math., 60, 4, 429-463 (1992) · Zbl 0757.65109
[76] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: approximation, stability and error estimates for \(h\)-refined meshes, Math. Models Methods Appl. Sci., 16, 7, 1031-1090 (2006) · Zbl 1103.65113
[77] Babuška, I.; Rheinboldt, W. C., A posteriori error analysis of finite element solutions for one-dimensional problems, SIAM J. Numer. Anal., 18, 3, 565-589 (1981) · Zbl 0487.65060
[78] Oden, J. T.; Brauchli, H. J., On the calculation of consistent stress distributions in finite element approximations, Internat. J. Numer. Methods Engrg., 3, 317-325 (1971) · Zbl 0251.73056
[79] Hinton, E.; Campbell, J. S., Local and global smoothing of discontinuous finite element functions using a least squares method, Internat. J. Numer. Methods Engrg., 8, 461-480 (1974) · Zbl 0286.73066
[80] Blacker, T.; Belytschko, T., Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements, Internat. J. Numer. Methods Eng., 37, 517-536 (1994) · Zbl 0789.73064
[81] Schatz, A. H.; Wahlbin, L. B., Interior maximum-norm estimates for finite element methods. II, Math. Comp., 64, 211, 907-928 (1995) · Zbl 0826.65091
[82] Schumaker, L. L., (Spline Functions: Basic Theory, Cambridge Mathematical Library (2007), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1123.41008
[83] Okstad, K. M.; Kvamsdal, T., Object-oriented programming in field recovery and error estimation, Eng. Comput., 15, 90-104 (1999)
[84] Govindjee, S.; Strain, J.; Mitchell, T. J.; Taylor, R. L., Convergence of an efficient local least-squares fitting method for bases with compact support, Comput. Methods Appl. Mech. Engrg., 213/216, 84-92 (2012) · Zbl 1243.65028
[85] Thomas, D. C.; Scott, M. A.; Evans, J. A.; Tew, K.; Evans, E. J., Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis, Comput. Methods Appl. Mech. Engrg., 284, 55-105 (2015) · Zbl 1425.65035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.