×

Dimensional hyper-reduction of nonlinear finite element models via empirical cubature. (English) Zbl 1439.74419

Summary: We present a general framework for the dimensional reduction, in terms of number of degrees of freedom as well as number of integration points (“hyper-reduction”), of nonlinear parameterized finite element (FE) models. The reduction process is divided into two sequential stages. The first stage consists in a common Galerkin projection onto a reduced-order space, as well as in the condensation of boundary conditions and external forces. For the second stage (reduction in number of integration points), we present a novel cubature scheme that efficiently determines optimal points and associated positive weights so that the error in integrating reduced internal forces is minimized. The distinguishing features of the proposed method are: (1) The minimization problem is posed in terms of orthogonal basis vector (obtained via a partitioned Singular Value Decomposition) rather that in terms of snapshots of the integrand. (2) The volume of the domain is exactly integrated. (3) The selection algorithm need not solve in all iterations a nonnegative least-squares problem to force the positiveness of the weights. Furthermore, we show that the proposed method converges to the absolute minimum (zero integration error) when the number of selected points is equal to the number of internal force modes included in the objective function. We illustrate this model reduction methodology by two nonlinear, structural examples (quasi-static bending and resonant vibration of elastoplastic composite plates). In both examples, the number of integration points is reduced three order of magnitudes (with respect to FE analyses) without significantly sacrificing accuracy.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74B20 Nonlinear elasticity
74K20 Plates
74H45 Vibrations in dynamical problems in solid mechanics

References:

[1] Carlberg, K.; Bou-Mosleh, C.; Farhat, C., Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations, Internat. J. Numer. Methods Engrg., 86, 2, 155-181 (2011) · Zbl 1235.74351
[2] Ryckelynck, D., Hyper-reduction of mechanical models involving internal variables, Internat. J. Numer. Methods Engrg., 77, 1, 75-89 (2009) · Zbl 1195.74299
[3] Barrault, M.; Maday, Y.; Nguyen, N.; Patera, A., An empirical interpolation’method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math., 339, 9, 667-672 (2004) · Zbl 1061.65118
[4] Chaturantabut, S.; Sorensen, D., Discrete empirical interpolation for nonlinear model reduction, (Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference, CDC/CCC 2009, Proceedings of the 48th IEEE Conference on (2010), IEEE), 4316-4321
[5] Nguyen, N.; Patera, A.; Peraire, J., A best points interpolation method for efficient approximation of parametrized functions, Internat. J. Numer. Methods Engrg., 73, 521-543 (2008) · Zbl 1163.65009
[6] Baiges, J.; Codina, R.; Idelsohn, S., Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations, Internat. J. Numer. Methods Fluids, 72, 12, 1219-1243 (2013) · Zbl 1455.76078
[7] Astrid, P.; Weiland, S.; Willcox, K.; Backx, T., Missing point estimation in models described by proper orthogonal decomposition, IEEE Trans. Automat. Control, 53, 10, 2237-2251 (2008) · Zbl 1367.93110
[8] Everson, R.; Sirovich, L., Karhunen-Loeve procedure for gappy data, J. Opt. Soc. Amer. A, 12, 8, 1657-1664 (1995)
[10] Chaturantabut, S.; Sorensen, D. C., Application of POD and DEIM on dimension reduction of non-linear miscible viscous fingering in porous media, Math. Comput. Model. Dyn. Syst., 17, 4, 337-353 (2011) · Zbl 1302.76127
[11] Kerfriden, P.; Goury, O.; Rabczuk, T.; Bordas, S. P.-A., A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics, Comput. Methods Appl. Mech. Engrg., 256, 169-188 (2013) · Zbl 1352.74285
[12] Drohmann, M.; Haasdonk, B.; Ohlberger, M., Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput., 34, 2, A937-A969 (2012) · Zbl 1259.65133
[13] Galbally, D.; Fidkowski, K.; Willcox, K.; Ghattas, O., Non-linear model reduction for uncertainty quantification in large-scale inverse problems, Internat. J. Numer. Methods Engrg., 81, 12, 1581-1608 (2010) · Zbl 1183.76837
[14] Radermacher, A.; Reese, S., POD-based model reduction with empirical interpolation applied to nonlinear elasticity, Internat. J. Numer. Methods Engrg. (2015), URL http://dx.doi.org/10.1002/nme.5177 · Zbl 1352.74048
[15] Grepl, M.; Maday, Y.; Nguyen, N.; Patera, A., Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, Math. Model. Numer. Anal., 41, 3, 575-605 (2007) · Zbl 1142.65078
[16] Antil, H.; Field, S. E.; Herrmann, F.; Nochetto, R. H.; Tiglio, M., Two-step greedy algorithm for reduced order quadratures, J. Sci. Comput., 57, 3, 604-637 (2013) · Zbl 1292.65024
[17] Hernández, J. A.; Oliver, J.; Huespe, A.; Caicedo, M.; Cante, J., High-performance model reduction techniques in computational multiscale homogenization, Comput. Methods Appl. Mech. Engrg., 276, 149-189 (2014) · Zbl 1423.74785
[18] Aanonsen, T., Empirical Interpolation with Application to Reduced Basis Approximations (2009)
[19] An, S.; Kim, T.; James, D., Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., 27, 5, 165 (2009)
[20] Farhat, C.; Avery, P.; Chapman, T.; Cortial, J., Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Internat. J. Numer. Methods Engrg., 98, 9, 625-662 (2014) · Zbl 1352.74348
[21] Farhat, C.; Chapman, T.; Avery, P., Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Internat. J. Numer. Methods Engrg., 102, 5, 1077-1110 (2015) · Zbl 1352.74349
[22] von Tycowicz, C.; Schulz, C.; Seidel, H.-P.; Hildebrandt, K., An efficient construction of reduced deformable objects, ACM Trans. Graph., 32, 6, 213 (2013)
[23] Kim, T.; Delaney, J., Subspace fluid re-simulation, ACM Trans. Graph., 32, 4, 62 (2013) · Zbl 1305.68248
[24] Teng, Y.; Otaduy, M. A.; Kim, T., Simulating articulated subspace self-contact, ACM Trans. Graph., 33, 4 (2014)
[25] Von-Tycowicz, C.; Schulz, C.; Seidel, H.-P.; Hildebrandt, K., Real-time nonlinear shape interpolation, ACM Trans. Graph., 34, 3, 34 (2015) · Zbl 1333.68262
[26] Chadwick, J.; An, S.; James, D., Harmonic shells: a practical nonlinear sound model for near-rigid thin shells, ACM Trans. Graph., 28, 5 (2009)
[27] Li, S.; Huang, J.; de Goes, F.; Jin, X.; Bao, H.; Desbrun, M., Space-time editing of elastic motion through material optimization and reduction, ACM Trans. Graph., 33, 4, 108 (2014) · Zbl 1396.65055
[28] Carlberg, K.; Tuminaro, R.; Boggs, P., Preserving lagrangian structure in nonlinear model reduction with application to structural dynamics, SIAM J. Sci. Comput., 37, 2, B153-B184 (2015) · Zbl 1320.65193
[30] Yvonnet, J.; He, Q., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains, J. Comput. Phys., 223, 1, 341-368 (2007) · Zbl 1163.74048
[31] Monteiro, E.; Yvonnet, J.; He, Q., Computational homogenization for nonlinear conduction in heterogeneous materials using model reduction, Comput. Mater. Sci., 42, 4, 704-712 (2008)
[32] Nguyen, N., A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales, J. Comput. Phys., 227, 23, 9807-9822 (2008) · Zbl 1155.65391
[33] Efendiev, Y.; Galvis, J.; Gildin, E., Local-global multiscale model reduction for flows in high-contrast heterogeneous media, J. Comput. Phys., 231, 24, 8100-8113 (2012)
[34] Efendiev, Y.; Galvis, J.; Thomines, F., A systematic coarse-scale model reduction technique for parameter-dependent flows in highly heterogeneous media and its applications, Multiscale Model. Simul., 10, 4, 1317-1343 (2012) · Zbl 1264.76088
[35] Abdulle, A.; Bai, Y., Reduced basis finite element heterogeneous multiscale method for high-order discretizations of elliptic homogenization problems, J. Comput. Phys., 231, 21, 7014-7036 (2012) · Zbl 1284.65161
[36] Abdulle, A.; Bai, Y., Adaptive reduced basis finite element heterogeneous multiscale method, Comput. Methods Appl. Mech. Engrg., 257, 203-220 (2013) · Zbl 1286.74088
[37] Hogben, L., Handbook of Linear Algebra (2006), Chapman & Hall/CRC
[38] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W., Numerical Recipes in Fortran 77: The Art of Scientific Computing 1 (1993), Cambridge University Press: Cambridge University Press Cambridge
[39] Krysl, P.; Lall, S.; Marsden, J., Dimensional model reduction in non-linear finite element dynamics of solids and structures, Internat. J. Numer. Methods Engrg., 51, 4, 479-504 (2001) · Zbl 1013.74071
[40] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge Univ Pr. · Zbl 1058.90049
[41] Lawson, C. L.; Hanson, R. J., Solving Least Squares Problems, Vol. 161 (1974), SIAM · Zbl 0860.65028
[42] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer: Springer New York · Zbl 0934.74003
[43] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2001), John Wiley and Sons Ltd.: John Wiley and Sons Ltd. New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.